
REFERENCE ARCHITECTURE

Portworx on
Red Hat OpenShift
Bare Metal
A validated architecture and design model to deploy Portworx®
on Red Hat OpenShift running on bare metal hosts.

REFERENCE ARCHITECTURE

22

Contents
Executive Summary ...3

About This Document ..3

Value Proposition ...3

Benefits of Red Hat OpenShift ...3

Benefits of Portworx ..4

Benefits of Portworx on Red Hat OpenShift Bare Metal ...5

Target Use Cases ...6

Planning and Architecture Overview ..6

Reference Architecture High Level Design ...6

Considerations for Red Hat OpenShift on Bare Metal ...8

Considerations for Portworx on Red Hat OpenShift ..8

Design Considerations ...12

Red Hat OpenShift Considerations ...12

Networking Considerations ...12

Storage Considerations ..15

High Availability Considerations ... 23

Performance Considerations .. 26

Security Considerations .. 29

Monitoring Considerations ...31

Air-gapped Cluster Considerations.. 35

Operational Considerations ... 36

Installation Methods and Procedures .. 36

Workload and Volume Considerations ... 46

Scaling ... 48

Backup and Disaster Recovery ..51

Upgrading ..51

Logging and Monitoring ... 55

Summary ...57

Legal Notice and Attributions ...57

REFERENCE ARCHITECTURE

3

Executive Summary

Modern applications are built using containers and orchestrated by Kubernetes, but they still need a layer
of persistence. Red Hat OpenShift, the industry's leading hybrid cloud application platform powered by
Kubernetes, brings together tested and trusted services to reduce the friction of developing, modernizing,
deploying, running, and managing applications. Red Hat OpenShift delivers a consistent experience across
public cloud, on-premises, hybrid cloud, and edge architecture. To run stateful applications on Red Hat
OpenShift, organizations need a robust data services platform like Portworx® by Pure Storage®. Portworx
provides features like replication, high availability, security and encryption, capacity management, disaster
recovery, and data protection to Red Hat OpenShift deployments. Instead of spending resources architecting
and managing a custom Kubernetes storage layer, organizations can accelerate their modernization journeys
by adopting a solution like Red Hat OpenShift with Portworx on bare metal servers.

About This Document
This Portworx reference architecture contains a validated architecture and design model to deploy Portworx on Red Hat
OpenShift running on bare metal hosts. The document is intended for Kubernetes administrators and cloud architects who are
familiar with Portworx. The audience must be familiar with basic Red Hat OpenShift concepts, like MachineSets, and hardware
concepts, like disk and network configurations. The document has three main technical areas:

• Planning and architecture overview: This section presents the high-level architecture overview on how Portworx
will be deployed on Red Hat OpenShift. It discusses the requirements related to OpenShift MachineSets for storage
and storageless nodes and also physical disk and network configuration recommendations.

• Design considerations: This section provides more detailed requirements and recommendations that must be
considered during the design phase. It covers Red Hat OpenShift requirements, networking, capacity planning, high
availability, resource, and performance considerations, security, and monitoring.

• Operations considerations: This section covers operational tasks such as installation methods, upgrades, data
protection, scaling, logging, and monitoring considerations. It also discusses considerations for running stateful
containerized applications in a production environment.

Value Proposition

Benefits of Red Hat OpenShift

Red Hat OpenShift is a modern application development and deployment platform. It delivers a consistent, scalable, and
secure platform for both virtualized and containerized applications from edge to core to cloud environments. It is designed
to allow applications and the data centers that support them to scale from small form factor deployments at the edge to
very large clusters consisting of thousands of nodes serving applications to millions of clients. Red Hat OpenShift is often
deployed in cloud and virtualized environments but can also be deployed on bare metal infrastructure which allows clusters to
support additional features like Red Hat OpenShift Virtualization for running VMs alongside containers on a single cloud-native
platform. These bare metal deployments share many of the features of other Red Hat OpenShift environments including ease
of deployment and rapid scaling to meet customer needs. In addition, by deploying on bare metal, you avoid the additional
overhead necessary to manage a host hypervisor or cloud environment.

REFERENCE ARCHITECTURE

4

Key benefits of Red Hat OpenShift include:

• Trusted DevSecOps platform: Red Hat engineers and tests the underlying Kubernetes engine along with additional
product features to deliver a complete hardened, tested and trusted platform. It is delivered upon Red Hat Enterprise
Linux, a secure foundation with a comprehensive set of security capabilities to protect applications. Red Hat also
offers Advanced Cluster Security for Kubernetes, providing full application lifecycle security.

• A comprehensive application platform: Red Hat OpenShift delivers a zero-configuration development platform
that increases productivity and innovation. As a unified platform, Red Hat OpenShift accelerates your application
modernization strategy with a single application platform to rehost, re-platform, or refactor existing monolithic or
n-tier applications alongside the development of new cloud-native applications. With extensions to the edge, and the
ability to build and manage intelligent applications with Red Hat OpenShift AI, organizations can realize benefits faster
and across the hybrid cloud.

• A consistent platform experience: From on-premises to the cloud, or at the edge Red Hat OpenShift delivers
a consistent experience across all environments. By standardizing on Red Hat OpenShift for both containerized
workloads and virtual machines, organizations can reduce operational complexity, while also streamlining processes.

Benefits of Portworx

Portworx cloud-native storage offers a transformative solution for managing stateful applications in Kubernetes environments,
far surpassing traditional hardware storage solutions and their basic CSI (container storage interface) drivers. While CSI
connectors often fall short in handling creates, updates, and deletes (CRUD) at the scale provided by Kubernetes and
containers, Portworx excels in delivering enterprise-grade features that enhance both operational efficiency and platform
engineering productivity for containerized environments.

Key benefits of Portworx cloud-native storage include:

• Accelerated time to revenue: By streamlining storage management and reducing complexities, Portworx helps
organizations achieve faster deployment and time to market.

• Data resiliency: Portworx ensures high availability and disaster recovery with advanced data replication and backup
capabilities, protecting against data loss and downtime.

• Enterprise scalability: Designed to scale with your needs, Portworx supports seamless growth, whether you're
operating in a single data center or across multiple clouds.

• Self-Service storage access: Developers gain the flexibility to provision and manage storage independently through
storage classes, empowering them to innovate without waiting for IT intervention.

• Integrated storage management: Portworx offers comprehensive management features, including rule-based
automation, thin provisioning, and support for multi-cloud, hybrid-cloud, and on-premises environments agnostic to
the hardware providers.

• Boosted platform engineering productivity: By providing a unified and efficient storage solution, Portworx enhances
the productivity of platform engineers, allowing them to focus on building and maintaining robust applications in
multiple environments.

With Portworx, organizations can achieve unmatched data agility and reliability, ensuring their Kubernetes storage and
databases are always performant and available, regardless of the underlying infrastructure.

REFERENCE ARCHITECTURE

5

Benefits of Portworx on Red Hat OpenShift Bare Metal

As part of their digital transformation efforts, organizations are modernizing their applications and infrastructure by adopting
containers and Kubernetes, leveraging Red Hat OpenShift for a robust, enterprise-grade application platform. When deployed
on bare metal, Red Hat OpenShift and Portworx together deliver unparalleled performance, security, and scalability for
modern applications.

Key benefits of running Portworx and Red Hat OpenShift on bare metal include:

• High performance: Bare-metal deployments eliminate the overhead of virtualization, providing direct access to
hardware resources. This results in superior performance for both containerized applications and stateful workloads
managed by Portworx.

• Full-stack automated operations: Red Hat OpenShift offers full-stack automation, streamlining operations from
the underlying hardware to the application layer. This automation simplifies management and reduces operational
complexity.

• Consistent experience across environments: With Red Hat OpenShift, organizations benefit from a consistent
application platform that works seamlessly across on-premises, hybrid-cloud, and multi-cloud environments.
Portworx provides a similar data platform for running persistent apps across hybrid and multi-cloud environments.
This consistency ensures smooth transitions and easier management.

• Self-service provisioning: Red Hat OpenShift enables developers to provision resources on-demand, accelerating
the development lifecycle. Combined with Portworx, developers can also easily manage storage, enhancing
productivity and innovation.

• Enhanced data management: Portworx adds a robust, secure, and highly available data management layer to Red
Hat OpenShift. This integration ensures that applications have reliable and scalable storage, essential for mission-
critical workloads.

• Scalability and flexibility: Both Red Hat OpenShift and Portworx are designed to scale effortlessly with your
organization’s growth. They provide the flexibility needed to handle dynamic workloads and evolving business needs.

• OpenShift Virtualization: OpenShift Virtualization allows you to run and manage virtual machines alongside
containers. This capability is particularly valuable in bare metal environments, where performance is critical. It
enables a seamless transition of legacy applications to modern infrastructure, supporting a hybrid approach and
unifying application management.

By combining the strengths of Red Hat OpenShift and Portworx on bare metal, organizations achieve a powerful and flexible
infrastructure that supports their digital transformation goals. This setup ensures high performance, reliability, and scalability,
making it an ideal solution for modern enterprise applications.

REFERENCE ARCHITECTURE

6

Target Use Cases

This document offers detailed guidelines and best practices for deploying Portworx on Red Hat OpenShift when utilizing
bare metal servers as the underlying infrastructure. By following the instructions and recommendations outlined in this
document, Red Hat OpenShift users will be equipped to deploy Portworx in a manner that ensures stability, reliability,
and optimal performance.

Once Portworx is deployed according to these guidelines, users will be able to confidently deploy any type of stateful
application within their Red Hat OpenShift environment. The robust data management capabilities of Portworx,
combined with the powerful orchestration and management features of Red Hat OpenShift, will enable seamless and
efficient storage operations for a wide variety of applications.

It is important to note that the scope of this document is focused on providing a general, stable deployment framework
for Portworx on Red Hat OpenShift. While it does not delve into specific recommendations for individual applications,
the deployment strategy presented here is designed to be universally applicable. This ensures that any application
requiring reliable and scalable storage can be supported effectively within the Red Hat OpenShift and Portworx
ecosystem.

By adhering to the best practices and guidelines provided, organizations can achieve a highly resilient and performant
storage solution that meets the needs of diverse and demanding stateful applications.

Planning and Architecture Overview
In this section, we provide a planning and architecture overview for deploying Red Hat OpenShift with Portworx on bare
metal. Our focus is on creating a high-level design that ensures scalability, reliability, security, and performance. We will
outline the key architectural components and their interactions, supported by logical diagrams. These visual aids will
illustrate the overall structure of the system, enabling a clear understanding of how the various elements work together
to support your production workloads. This section of the reference architecture will give you a quick look at the overall
architecture before the following sections explain items in greater detail.

Reference Architecture High Level Design

The diagram below shows a high level design of the Portworx reference architecture deployed on Red Hat
OpenShift running on bare metal hardware. By implementing this design, a platform engineering team can automate
the provisioning of a well defined architecture following best practices that includes high availability, operations
management, observability, business continuity, performance, and security.

FIGURE 1  General reference architecture

REFERENCE ARCHITECTURE

7

Portworx Cluster Configuration

Portworx requires a minimum of three storage nodes in the cluster to create a quorum and to prevent a split-brain scenario
that can occur with two nodes. Three nodes are also needed to provide three redundant copies of data for persistent volumes.
However, for a production environment, this reference architecture recommends starting with six storage nodes. Although a
Portworx cluster with three storage nodes may work well in some environments, there are significant advantages to deploying
with six storage nodes initially:

There are multiple advantages to using six nodes, including:

• Cluster capacity:

 − In a cluster with three storage nodes, losing one node results in losing one-third of its capacity, increasing the
load on the remaining two nodes until the lost node recovers, which could be days in the case of hardware
failures.

 − In a six-node cluster, losing one node affects only one-sixth of its capacity, allowing the remaining five nodes to
distribute the load more evenly, especially across fault domains like a rack.

• I/O load distribution:

 − A three-node cluster may experience more frequent I/O latencies during peak times.

 − A six-node cluster can distribute I/O requests more effectively, reducing the risk of I/O latencies.

Preparing Red Hat OpenShift

Before deploying Portworx, consider the following points to prepare Red Hat OpenShift and physical nodes:

• MachineSet configuration:

 − A MachineSet with six storage nodes is the minimum recommended for production environments (fewer nodes are
not recommended unless the load is minimal such as in a development environment).

 − Ensure the Red Hat OpenShift cluster spans multiple availability zones or fault domains and equally distribute
storage nodes among them (at least three zones are recommended).

 − Use the label portworx.io/node-type: storage on all nodes to enable Portworx to automatically provision storage
for new nodes.
Note: This is only needed if you will also deploy storageless worker nodes which will not participate in a Portworx
storage cluster. If all worker nodes will be storage nodes such as in hyper-converged architectures, this label is not
needed.

 − Portworx recommends that each node must have a minimum of eight CPU cores and 32 GB RAM (refer to the
Resource Considerations section for more details).

http://portworx.io/node-type

REFERENCE ARCHITECTURE

8

Considerations for Red Hat OpenShift on Bare Metal

When it comes to an architectural footprint that a customer must choose to adopt, they will find that the experience that is
provided by Red Hat OpenShift, whether deployed virtualized, in the cloud, or on bare metal resources within a customer’s
data center are all very similar. Deployments can be automated through the Assisted Installer, or an IPI based install, or fully
customized with the agent-based or UPI based installation method. Due to this, the cluster deployment experience is similar
no matter what form factor the cluster is deployed in.

One consideration that a customer must take into account is how Red Hat OpenShift is subscribed based on the form factor of
the deployment. With a virtualized or hosted deployment of Red Hat OpenShift, subscriptions are based on vCPU core count
on the compute nodes where application workloads run. A bare metal deployment differs in that it now becomes a socket-
based entitlement with one subscription supporting up to two physical sockets, and up to 64 physical cores per node.

Another major benefit of adopting a bare-metal architecture is that it allows for additional features such as OpenShift
Virtualization to be supported. Enabling this feature on a cluster allows it to run both virtual machines and containerized
applications side-by-side, in a single cloud-native environment.

Considerations for Portworx on Red Hat OpenShift

Portworx is a comprehensive data platform for Kubernetes and it is integrated with Red Hat OpenShift. All features that
Portworx provides to Kubernetes platforms are also available for Red Hat OpenShift clusters, ensuring seamless functionality
and enhanced capabilities. Additionally, Portworx offers a plugin specifically designed for OpenShift, which integrates the
Portworx Console UI with the OpenShift console.

The Portworx Console provides a detailed overview of the Portworx Storage Cluster, including critical metrics and status
information. This integration enriches the OpenShift console by adding panels that display Portworx volume details in the
OpenShift console Storage tabs.

FIGURE 2  Portworx plugin for Red Hat OpenShift

REFERENCE ARCHITECTURE

9

The Portworx Console plugin is available for Red Hat OpenShift clusters running version 4.12 or later and can be enabled
during the deployment or upgrade of the Portworx operator directly through the OpenShift UI. This integration simplifies
monitoring and provides administrators with comprehensive insights into their storage resources all within the familiar
OpenShift interface. By leveraging this integration, users can benefit from the data management capabilities of Portworx while
maintaining a unified operational experience within Red Hat OpenShift.

Disaggregated vs Hyper-converged Architectures

When designing the storage architecture for your Kubernetes cluster with Portworx, two primary approaches can be
considered: disaggregated and hyper-converged architectures. Each approach has its own set of advantages and trade-offs,
and the choice between them depends on your specific requirements and constraints.

For bare metal deployments, Portworx strongly recommends adopting a hyper-converged architecture. This approach ensures
consistent storage performance and availability while simplifying the deployment process. Unlike cloud environments, bare
metal installations cannot easily leverage the elasticity offered by cloud resources, making the benefits of a disaggregated
infrastructure less significant. Conversely, a disaggregated architecture is typically preferred in cloud environments where
elasticity is crucial, allowing worker nodes to scale in or out based on resource demands.

Disaggregated Architecture

In a disaggregated architecture, a subset of Kubernetes worker nodes is designated to provide storage for the entire cluster.
Not all worker nodes participate in storage provisioning; instead, specific nodes are dedicated to handling storage tasks. This
segregation allows for a clear distinction between compute and storage resources.

FIGURE 3  Disaggregated architecture

REFERENCE ARCHITECTURE

10

Key characteristics of a disaggregated architecture include:

• Dedicated storage nodes: Only a selected group of nodes are responsible for storage, while the rest focus on
compute tasks.

• Resource Specialization: Storage nodes can be optimized with hardware specifically suited for storage tasks, such
as high-performance NVMe disks and additional RAM, without impacting compute nodes.

• Isolation: Faults or performance issues in the compute nodes do not directly affect the storage nodes, and vice
versa, providing a layer of operational isolation.

Advantages of a disaggregated architecture include:

• Optimized resource allocation: Allows for tuning and optimizing nodes specifically for storage without affecting
compute performance.

• Scaling: Storageless nodes can be scaled down easily since they do not participate in cluster quorum decisions and
Portworx will automatically decommission a scaled down storageless node after 10 minutes.

There are also a few potential disadvantages of using distributed architectures, like:

• Potential bottlenecks: As storage responsibilities are limited to fewer nodes, these nodes can become bottlenecks
under high I/O workloads. Accessing replicas on a local node provides better performance than going over a network
device.

• Complexity in scaling: Scaling storage independently of compute resources can add complexity to cluster
management and scaling strategies.

Hyper-converged Architecture

In a hyper-converged architecture, every worker node in the Kubernetes cluster participates in providing storage for
applications. This means that both compute and storage tasks are handled by the same set of nodes, distributing storage
responsibilities across the entire cluster.

FIGURE 4  Hyper-converged architecture

REFERENCE ARCHITECTURE

11

Key characteristics of hyper-converged architecture include:

• Uniform node role: All worker nodes serve dual roles, providing both compute and storage resources.

• Balanced resource utilization: Storage load is evenly distributed across all nodes, preventing any single set of nodes
from becoming a bottleneck.

• Integrated scaling: Adding more nodes to the cluster increases both compute and storage capacity simultaneously.

Advantages of hyper-converged architecture are:

• Enhanced scalability: As you add more nodes to the cluster, you increase both compute and storage capacity,
making it easier to scale out your infrastructure.

• Improved performance: Distributing storage tasks across all nodes can lead to better I/O performance and lower
latency due to the collective resources of the entire cluster. Applications will also be local to their replicas preventing
the network from becoming a storage bottleneck.

• Simplified architecture: With every node performing the same role, the architecture can be simpler to design and
implement.

Disadvantages of using hyper-converged architecture include:

• Resource utilization: Compute and storage tasks share the same resources, which means that a portion of each
node's CPU and Memory must be dedicated to the storage cluster components.

• Elasticity: The Portworx storage cluster holds persistent data for applications which can not be removed easily. If the
Red Hat OpenShift cluster is configured to scale in/down during times of inactivity, the storage cluster prevents this
from happening due to its requirement to hold onto stateful data.

REFERENCE ARCHITECTURE

12

Design Considerations

Red Hat OpenShift Considerations

A Red Hat OpenShift Container Platform deployment on bare metal requires the following nodes:

Hosts Description

Bootstrap machine The cluster requires the bootstrap machine to deploy the OpenShift Container Platform

cluster on the three control plane machines. You can remove the bootstrap machine

after you install the cluster.

Control plane machines The control plane machines run the Kubernetes and OpenShift Container Platform

services that form the control plane.

Compute machines, also known as worker

machines

The workloads requested by OpenShift Container Platform users run on the compute

machines. These are also the machines where Portworx Enterprise will be deployed.

TABLE 1  Red Hat OpenShift node types

Note: Although Red Hat OpenShift supports configurations with two worker machines, this is not a supported Portworx configura-

tion. Portworx storage clusters will require a minimum of three worker nodes to create quorum for the storage cluster.

Important: To maintain high availability of your cluster, use separate physical hosts for these cluster machines.

Requirements for node operating systems, versions, instruction set requirements, and minimum compute, memory, storage,
and IOPS requirements should be reviewed for the version of Red Hat OpenShift you are planning to run. Please refer to Red
Hat documentation.

This reference architecture was written based on testing of Portworx Enterprise 3.1.2 with Red Hat OpenShift version
4.15. Please refer to the Portworx support matrix for supported versions of Portworx for Red Hat OpenShift on bare metal
implementations.

Networking Considerations

Designing an efficient network is essential for the optimal performance and reliability of your Portworx deployment. This
section outlines key considerations and best practices for configuring the network in a Portworx environment running on Red
Hat OpenShift. By carefully planning the network architecture, you can ensure seamless communication, high availability, and
enhanced security for your storage cluster. The following subsections will cover critical aspects of network design, including
the separation of management and data interfaces, as well as important firewall considerations to protect and optimize your
infrastructure.

Management and Data Interfaces

When designing the networking configurations for a Portworx deployment, several key considerations must be taken into
account to ensure optimal performance, reliability, and scalability. Portworx leverages the bare metal server’s physical network
interface card (NIC) for serving remote storage connections, as well as for keeping persistent volume replicas in sync across
nodes. Special care should be taken when designing the network configurations for Portworx on Red Hat OpenShift.

https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/installing/installing-on-bare-metal#prerequisites-28
https://docs.redhat.com/en/documentation/openshift_container_platform/4.16/html/installing/installing-on-bare-metal#prerequisites-28
https://docs.portworx.com/portworx-enterprise/platform/openshift/ocp-bare-metal/before-you-begin#portworx-enterprise-supported-versions

REFERENCE ARCHITECTURE

13

• Default NIC usage: By default, Portworx utilizes the same network interface cards used by the Kubernetes cluster for
both management traffic and data replication. This configuration simplifies the initial setup of the Portworx storage
cluster but may lead to potential network congestion as both types of traffic share the same physical network
resources. Using the default NIC for Portworx should be used for labs, or development environments to ease setup,
but should be avoided for use cases where storage performance is critical, such as in production environments.

FIGURE 5  Portworx default network configuration

• Dedicated data networks: To optimize network performance and reduce congestion, Portworx can be configured
to use a dedicated NIC specifically for handling data replication between nodes. This approach segregates data
replication traffic from the management and application traffic, ensuring that the NICs used by Red Hat OpenShift for
managing containerized applications, remain uncongested and perform efficiently. Implementing a dedicated data
network can enhance the overall throughput and reliability of the storage cluster, especially with high data replication
demands.

Note: Bonded NICs would be preferred for the Portworx data network in order to prevent a disruption in the event that a NIC fails.

FIGURE 6  Portworx dedicated data network

REFERENCE ARCHITECTURE

14

• Network performance: The physical network has a great deal to do with how fast data can be written to replicas
across nodes in the Red Hat OpenShift cluster. Writes to a persistent volume must be replicated to a second node
before committing the writes back to the application, meaning the network is involved in how fast applications can
write data to disk when using Portworx for data availability. Portworx recommends a network bandwidth of 10Gbps,
with a minimum requirement of 1Gbps with latency less than 5 ms. Ensure that all storage nodes participating in data
replication for Portworx use the same speed NICs to provide consistent storage performance.

Note: The network bandwidth has an important effect on performance of the storage cluster to maintain replicas. Networks
with 25Gbps or more would be preferred for high intensity data workloads.

Firewall Considerations

When deploying Portworx in a Red Hat OpenShift environment, ensuring proper network communication is essential for the
seamless operation of your storage infrastructure. A critical aspect of this setup involves configuring your firewall to allow the
necessary ports that facilitate communication between Portworx nodes and management interfaces. Properly opening these
ports ensures that data replication, monitoring, and management tasks can be performed without interruption, maintaining the
reliability and performance of the storage cluster. Below, the essential firewall ports required for running Portworx are listed.

Port Protocol Direction Description

17001 TCP Inbound and East-West

Traffic

PX Management

17002 TCP and UDP East-West Traffic PX node to node gossip communication

17003 TCP East-West Traffic PX store data port

17004 TCP East-West Traffic PX namespace

17005 TCP East-West Traffic PX control plane server

17006 TCP East-West Traffic PX data plane server

17008 TCP East-West Traffic KVDB monitor port

17009 TCP East-West Traffic PX node to node communication

17010 TCP East-West Traffic PX Namespace driver

17011 TCP East-West Traffic PX diagnostic service

17014 TCP East-West Traffic Watchdog server

17015 TCP East-West Traffic PX etcd peer-to-peer

17016 TCP East-West Traffic PX etcd client service

17017 TCP East-West Traffic PX gRPC SDK gateway

17018 TCP Inbound and East-West

Traffic

Portworx management port

17019 TCP East-West Traffic PX health monitor

TABLE 2 Portworx ports requirement

REFERENCE ARCHITECTURE

15

Additionally, the optional but recommended telemetry services have specific network requirements as outlined below:

Port Protocol Direction Description

17021 TCP East-West Traffic Telemetry log uploader

20002 TCP East-West Traffic Telemetry phone home

TABLE 3 Portworx telemetry ports requirement

Telemetry also requires outbound access over port 443 to the following public domains and should be reachable by the
worker nodes.

Port Protocol Direction URL

443 TCP outbound https://register.cloud-support.purestorage.com

443 TCP outbound https://rest.cloud-support.purestorage.com

443 TCP outbound https://logs-01.loggly.com

TABLE 4 Telemetry domain allowed list

The following URLs must be accessible over HTTPS. These URLs are essential for tracking license consumption by Portworx,
ensuring accurate monitoring and compliance. Proper access to these addresses guarantees that Portworx can effectively
manage and report on license usage, contributing to an optimized and well-regulated deployment.

Port Protocol Direction URL

443 TCP outbound https://rest.zuora.com

443 TCP outbound https://flex1327.compliance.flexnetoperations.com

TABLE 5 Licensing Domain Allowed List

Storage Considerations

Proper sizing considerations are crucial to the success of any storage solution. Ensuring that your storage resources are
adequately sized helps maintain performance, reliability, and prevents potential bottlenecks and inefficiencies that can disrupt
operations. When deploying a solution like Portworx on Red Hat OpenShift, it is essential to evaluate the storage needs of
your applications carefully. This involves assessing factors such as current and projected data growth, I/O performance
requirements, redundancy, high availability, and the capacity to handle peak loads. By taking these factors into account you
can design a storage architecture that not only meets the demands of today but is also resilient to support future growth.

Initial Cluster Capacity

Portworx offers mechanisms to scale both vertically and horizontally, ensuring your storage cluster can dynamically adapt
to changing demands. Vertical scaling involves increasing the capacity of individual storage nodes, while horizontal scaling
adds additional nodes to the cluster to enhance overall capacity and redundancy. These scaling operations can be seamlessly
managed through automation routines powered by AutoPilot and Cloud Drives depending on the underlying storage providers.
These processes can be fully automated, allowing the cluster to respond in real-time to workload demands.

REFERENCE ARCHITECTURE

16

The availability of these advanced scaling features significantly alleviates the pressure of initial capacity planning. However,
a thorough initial capacity sizing exercise remains crucial. Proper planning helps to ensure that the cluster is adequately
provisioned to handle the expected workloads from the outset, providing a stable foundation upon which dynamic scaling
can operate effectively. This initial step sets the stage for smooth operations and helps to identify any potential limitations or
bottlenecks before they impact performance.

The following factors should be considered when creating the initial capacity planning:

• Number of volumes (PVCs) in the cluster

• Average size of volumes

• Number of nodes

• Replication factor (Portworx recommends a replication factor of 2 or 3)

Identify Total Cluster Capacity Needs

The first step to identify initial cluster capacity needs is to review the total amount of storage necessary for your applications
and the associated replicas for those applications to provide high availability. Use the table below to total up the total cluster
volume sizes necessary for operations. Be sure to also include a growth factor to account for increases in capacity expected.
Sample entries have been added as an example.

Volume
Size

of
Volumes

Replication
Factor (HA)

Growth
Factor

Total Size (Volume Size * Volumes * Replication
Factor * Growth Factor)

50 GiB 30 3 1.3 5.85 TiB

100 GiB 50 2 1.3 13 TiB

Total Size Sum = 18.85 TiB

TABLE 6 Cluster Capacity Worksheet

Once you have determined the total amount of capacity that is needed for your workloads, the storage node sizing can be
completed based on the results. The number of storage nodes * the total disk capacity available (not including journal devices
or the operating system disks) should be greater than the desired cluster size from the previous exercise. An example can be
found below.

Desired
Cluster Size

Number of
Storage Nodes

Total Disk Capacity available per
Node not counting Operating
System Disks or Journal Devices

Total Disk Capacity
(Nodes * Disk Size *
Disk Count)

18.85 TiB 6 4 TiB 24 TiB

TABLE 7 Node Sizing Worksheet

The two calculations presented above should identify a baseline for the initial storage capacity necessary to run your
workloads.

REFERENCE ARCHITECTURE

17

Backing Disks for the Portworx Storage Cluster

When configuring a Portworx storage cluster on Red Hat OpenShift, the choice and configuration of backing disks are critical
for achieving optimal performance, reliability, and scalability. Below are key considerations to guide you in selecting and
configuring backing disks for your Portworx storage cluster:

• Block devices: Portworx requires block storage devices as the backing storage for the Portworx storage cluster.
Each storage node must be provisioned with raw block devices rather than pre-formatted file systems or logical
volumes. These block devices can be sourced from local disks within the bare metal worker nodes or from a
hardware storage array, such as a Pure Storage FlashArray or other SAN systems, that can present block devices to
the servers. Ensure that the block devices to be used by Portworx can be recognized by the host operating system
of the worker nodes.

• Disk type and performance: The block devices used by Portworx determine the overall capacity, I/O performance,
and throughput of the storage cluster. When selecting disks, consider the type, size, and performance capabilities.
Faster devices, such as NVMe SSDs, will provide better performance for Kubernetes applications utilizing Portworx
for persistent volumes (PVs) compared to slower devices like traditional hard disk drives.

• Disk redundancy and fault tolerance: Portworx allows application owners to specify the level of redundancy for their
stateful data through replication factors (e.g., repl2, repl3). This ensures that replicas are stored on multiple nodes in
the cluster. Additionally, using a RAID configuration (such as RAID1) at the hardware controller level can provide per-
node disk redundancy. This setup allows for single disk failures within a node without triggering a re-sync of replicas
to another node, providing an extra layer of protection and potentially reducing re-sync overhead, though it comes
with higher hardware costs.

• Capacity planning: The backing disks directly impact the total capacity of the Portworx storage cluster. While
Portworx requires a small amount of overhead for metadata and journal writes, most of the capacity is used for
persistent volumes and replicas. When planning capacity, consider the expected number of replicas per application
to ensure sufficient storage. Disks can be resized, or additional devices can be added to expand the total storage
cluster capacity for future needs.

• Storage pool configuration: Portworx requires at least one storage pool to operate, but multiple pools can be
configured to segregate different types of workloads or create storage tiers for performance optimization. Each
storage pool should consist of drives with identical specifications to ensure consistent storage performance across
the nodes in the cluster. This configuration helps maintain uniformity in storage performance for all replicas.

By carefully considering these factors, you can ensure that your Portworx storage cluster on Red Hat OpenShift is well-
equipped to handle the demands of your applications, providing high performance, reliability, and scalability.

Storage Pools

By following these guidelines, organizations can deploy a robust and scalable Portworx architecture on Red Hat OpenShift,
ensuring high availability and optimal performance for their applications.

A storage pool in Portworx is a logical grouping of a node's physical drives. Portworx uses the space in these storage pools to
dynamically create virtual volumes for containers. Storage pools consist of a collection of drives with the same capacity and
type. When you create a pool, Portworx categorizes it based on its latency and performance in random and sequential IOPS.

REFERENCE ARCHITECTURE

18

To set up a storage pool, you need a minimum of one drive per node. Portworx evaluates each drive through a benchmark
process, categorizing it based on its throughput into one of three I/O priorities: low, medium, or high. Drives that share the
same I/O priority and size within a node are grouped into a pool. This categorization allows you to align various applications
with the appropriate tier of storage based on their performance requirements. For instance, database applications can be
placed on flash devices for high performance, while applications managing logging data can utilize less performant options.

A single backing disk is required per node to create a storage pool. However, for future scalability, consider the methods
available to increase storage capacity in the cluster. This can be achieved either by expanding an existing disk (which is often
feasible when using a hardware array for backing disks) or by adding additional disks to the storage pool. While both methods
increase capacity, adding more disks necessitates an I/O rebalancing process, which is intensive. Using a single drive
allows for the storage pool to be resized by expanding the backing disks. When the Portworx storage cluster is expanded
by vertically scaling the backing drives, it does not require a data rebalance. For this reason, Portworx recommends using a
single disk as the backing disk for the storage cluster in a bare metal environment.

FIGURE 7 Portworx Storage Pools

Journal Devices

Portworx recommends using a journal device to handle metadata writes. Journal writes are small and frequent, so an SSD
or NVMe drive is recommended for this purpose. The journal device should be 3GB, as Portworx will only utilize this amount
of storage for journaling. Using a larger device does not provide any additional benefit unless the size of the disk also adds
IOPS, like in many cloud environments. The journal device should be at least as fast as the fastest storage device on the node
allocated for the Portworx storage cluster. If the journal device is slower, overall performance will degrade to match the slower
device.

If using local drives for backing disks, it is recommended to have the journal device automatically created from the existing
disks instead of dedicating a large disk for a 3GB requirement. This is simply to reduce the cost of hardware. If using a
backing drive from a storage array where multiple volumes or LUNs can be created easily of any size, and presented to worker
nodes, Portworx recommends creating a 3GB volume specifically for the journal device to get better performance.

Portworx KVDB

Portworx relies on a key-value database (KVDB) to store critical information, including the cluster’s state, configuration data,
and metadata for storage volumes and snapshots. This data is essential for the operation of the storage cluster and must be
highly available and protected from failures.

When configuring Portworx for your Kubernetes environment, you have two primary options for the key-value database
(KVDB) that Portworx uses to store its internal metadata, an internal KVDB or an external etcd cluster:

REFERENCE ARCHITECTURE

19

Internal KVDB: For most deployments, we recommend using the internal KVDB provided by Portworx. This option simplifies
the deployment process by eliminating the need for an additional external cluster, thereby reducing complexity and potential
points of failure. The internal KVDB is fully integrated with Portworx, providing a seamless and efficient solution for managing
your storage metadata.

External etcd cluster:Alternatively, you can use an external etcd cluster as your KVDB. This option is particularly beneficial
if you already have an existing etcd infrastructure in place or if you need advanced features such as SyncDR (Synchronous
Disaster Recovery). SyncDR requires an external etcd cluster to ensure the high availability and consistency of your data
across geographically dispersed clusters. While using an external etcd cluster can offer additional flexibility and scalability, it
also introduces more complexity in terms of setup and management. If using an external etcd cluster be sure that the cluster
is spread across multiple fault domains to ensure quorum can be maintained during an outage.

Portworx recommends using an internal KVDB database deployed as part of the storage cluster deployment unless there is a
requirement to use the Portworx SyncDR solution.

When deploying the internal KVDB, Portworx recommends using a dedicated 64GB disk if available. Using a dedicated disk
separates the I/O to a different device from the storage cluster, reducing read and write contention and lowering latencies
for applications running on the storage cluster. The KVDB only requires three of the Red Hat OpenShift worker nodes for
proper operation so this 64GB disk only needs to be available on the nodes where the KVDB will live. In the event that there
is a KVDB node failure, Portworx will promote another node to become a KVDB node. For this reason, Portworx recommends
specifying six nodes that are capable of running the KVDB and labeling them with the px/metadata-node=true key-value
pair. These nodes should be available across the fault domains to ensure that there are always two KVDB nodes available to
maintain quorum in the event of a host failure.

FIGURE 8 KVDB reference

In the event that the etcd cluster goes offline, the Portworx storage cluster will enter a "run-flat" mode. During this state,
Portworx workloads will continue to operate, but no changes can be made to the cluster, including the creation and deletion
of PVCs and scaling operations.

REFERENCE ARCHITECTURE

20

Generic Third Party Array Considerations

A hardware storage array can be used for providing the block-devices as backing disks for the Portworx Storage cluster.
Using a hardware storage array may provide benefits such as deduplication or compression for replicas stored in the Portworx
Storage cluster but will depend on the capabilities of the storage array vendor.

When providing backing disks to Portworx storage nodes from a hardware array, special considerations should be taken. This
section explains design considerations that should be taken into account when using an external Storage Array Network for
Portworx Backing disks.

Block devices are typically presented to physical hosts (Red Hat OpenShift worker nodes) via Fibre-Channel or iSCSI
connections. Portworx recommends using a minimum of two iSCSI or Fibre-Channel interfaces per node to present storage
to the cluster. Using a pair of interfaces provides high availability in the case of a hardware failure, and with multi-pathing
can provide more bandwidth to the backing storage array. Consider the configurations below for Fibre-Channel and iSCSI
connections:

Fibre-Channel: If using Fibre-Channel, ensure proper zoning in the SAN Fabric for the nodes.

iSCSI: When using iSCSI, it is crucial to dedicate Ethernet interfaces solely for storage purposes, rather than sharing them
with OpenShift traffic. Ensure that jumbo frames are configured on these interfaces, as well as any network devices in-line
including the physical switches and storage array to enhance performance.

For the storage cluster disks, Portworx recommends presenting a single volume for each Portworx storage node based on
your sizing decisions. Using a single volume makes it less impactful on performance if re-sizing operations are introduced
later. Provided that your storage array is capable of resizing these volumes on day two, these volumes can be expanded to
increase the total storage of the Portworx storage cluster without causing a rebalancing task to occur. Rebalancing is a costly
storage operation which results in copying data.

It is simple to create additional volumes of a desired size with an external hardware array. In a scenario when you are using
an external hardware array, Portworx recommends creating 3 GB volumes from the array and presenting them to the worker
nodes to be used as the journal device.

FIGURE 9 Third-party array diagram

REFERENCE ARCHITECTURE

21

Pure FlashArray Considerations

For Pure FlashArray customers, the process of managing the backing disks on the storage is similar to a generic array, but
adds Portworx cloud drive functionality to simplify provisioning and scaling of backing disks. Similar to any hardware array,
the Fibre-Channel or iSCSI interfaces should be configured with proper zoning and masking, as well as configuring devices
for Jumbo Frames.

Portworx Enterprise has Cloud Drives which is a way for the Portworx control plane to manage Pure Storage disk arrays
and persistent disks on Amazon Web Services (AWS), Azure, Google Compute Platform (GCP), IBM Cloud, and VMware
vSphere. To set up Cloud Drives the Red Hat OpenShift worker nodes must be configured to disable Secure Boot, and to
apply a multipathd configuration file with the appropriate settings. To do this, an OpenShift Machine configuration must be
applied to each MachineGroup providing storage to the cluster.

The configuration for multipath.conf can be found in the official Portworx documentation. Here is a sample YAML manifest
for a MachineConfig:

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: worker-enable-multipathing
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - contents:
 source: data:text/plain;charset=utf-8;base64,YOUR_BASE64_ENCODED_MULTIPATH_CONF_HERE
 mode: 420
 path: /etc/multipath.conf
 systemd:
 units:
 - name: multipathd.service
 enabled: true
The above manifest enables multipathing for FiberChannel connections. To add iSCSI based FlashArray support,
uncomment the lines below.
- name: iscsid.service
enabled: true
Ensure Secure Boot is disabled for Portworx to install its kernel modules properly.

Before deploying Portworx, create a StorageAdmin account on the FlashArray and obtain the API key. This key will be used
to create a JSON configuration file pure.json. After creating the JSON file, set up a namespace for Portworx and create a
Kubernetes secret using this file, following the instructions provided in the Portworx documentation. This secret will be
used by the Portworx control plane to send instructions to the Pure Flash Array to create volumes, expand volumes, etc.
providing automation between Portworx and the Flash Array.

When deploying Portworx, specify the desired configuration values as usual but choose Pure Flash Array" as the provider.
When it comes to the capacity configuration section of the config, specify a 3 GB Journal volume, and the desired capacity
for your Portworx storage pool. When you apply the storage cluster configuration to the Red Hat OpenShift cluster, the
appropriate volumes will be created on the FlashArray and attached to the worker nodes.

REFERENCE ARCHITECTURE

22

Portworx AutoPilot can also be used in conjunction with Cloud Drives, to automatically scale not only persistent volumes, but
the Portworx storage cluster as well.

FIGURE 10  Pure Storage array diagram

Local Disks Considerations

Local disks (internal disks) can be utilized as block devices to back the Portworx storage cluster. Bare metal installations
with local disks may require a different storage setup compared to clusters with a storage array. Since local disks cannot be
partitioned like volumes on a storage array, it's important to use the entire physical disk to optimize I/O performance. This
approach allows for the creation of a storage pool without the need to designate an individual journal device or KVDB drive,
thereby maximizing the use of physical hardware. For instance, servers equipped with four 1TB disks may not want to allocate
a full 1TB disk solely for a 3GB journal device.

The trade-off between gaining performance by splitting I/O streams across devices and utilizing the full capacity of the disks
is managed by combining metadata, journal, and storage space into a single pool in Portworx installations on local devices.

FIGURE 11  Local disk configuration diagram

Application availability is maintained through the replication factor within the Portworx storage cluster. Portworx replicates
data between nodes, eliminating a requirement for mirroring or parity through RAID configurations at the physical disk level.
However, using RAID—such as RAID 1, 5, 6, or 10—to add redundancy, while not necessary for maintaining high availability,
can prevent a single disk failure from taking a Portworx node offline.

When considering RAID configurations, the decision hinges on whether you prefer the RAID configuration to degrade on a
node or for the Portworx storage cluster to degrade if a single disk fails. In either case, data would be redundant as long as a
replication factor with multiple replicas is used for the application.

REFERENCE ARCHITECTURE

23

Object Storage Options

While Portworx offers robust data management solutions for block and file storage within Kubernetes environments, it does
not provide native object storage capabilities. For applications that require object storage, you can leverage solutions like
Pure Storage FlashBlade® or Amazon S3. These options deliver scalable, high-performance object storage that complements
your Kubernetes infrastructure.

To facilitate seamless integration with these object storage solutions, Portworx can proxy connection information to your
applications using its scale-out object storage service. This service allows you to manage object storage for your Kubernetes
workloads efficiently, providing a unified management experience. By utilizing this feature, you can easily connect your
applications to the required object storage backend, ensuring smooth operation and optimal performance.

High Availability Considerations

Ensuring high availability in your Red Hat OpenShift and Portworx environments is vital for minimizing downtime and
maintaining continuous operation. This section delves into key considerations for achieving high availability, focusing on three
critical areas: physical fault domains, OpenShift node topologies, and Portworx storage cluster topologies. By understanding
and implementing best practices in each of these areas, you can design a resilient infrastructure that can withstand hardware
failures and other potential disruptions, thereby ensuring that your applications and services remain consistently available.

Physical Fault Domains

High availability (HA) is a critical component in the design of any resilient storage and compute infrastructure. While
Portworx and Red Hat OpenShift provide robust mechanisms to ensure data and application availability, the effectiveness
of these mechanisms heavily depends on the proper configuration of physical fault domains. Understanding and correctly
implementing physical fault domains is essential to mitigate risks associated with hardware failures and to ensure continuous
operation of your applications.

A fault domain is essentially a grouping of hardware components that share a common risk of failure. These components can
include servers, storage devices, network equipment, power supplies, and even entire racks or data centers. By appropriately
configuring fault domains, you can isolate failures to specific segments of your infrastructure, thereby reducing the impact on
overall system availability.

Portworx recommends using three isolated fault domains when possible, including using separate data centers or availability
zones. In this architecture Portworx and Red Hat OpenShift control planes and replicas can be stretched across multiple
independent fault domains and the loss of an entire data center will not create an outage to an application stack.

FIGURE 12  Data center fault domains

REFERENCE ARCHITECTURE

24

In on-premises environments, this is often cost prohibitive and exceptions are often made at the risk of possible outages. In
those situations, Portworx recommends using isolated rack-level redundancies to provide a highly available physical design.
This architecture assumes that Red Hat OpenShift and Portworx control plane nodes are distributed across racks and worker
nodes are also distributed and labeled into their own fault domains. Each rack should have independently maintained power
distribution units (PDUs), top of rack (TOR) switches, etc. and shared resources such as generators, cooling systems, etc.
should be reduced as appropriate to reduce single points of failure.

FIGURE 13  Rack fault domains

Red Hat OpenShift Node Topologies

A node is a virtual or bare-metal machine in the Red Hat OpenShift cluster. Worker nodes host your application containers,
grouped as pods. The control plane nodes run services that are required to control the cluster. In OpenShift Container
Platform, the control plane nodes contain more than just the Kubernetes services for managing the OpenShift Container
Platform cluster.

In Red Hat OpenShift, there is also the concept of Infrastructure nodes. These are nodes that are labeled to run pieces of the
OpenShift Container Platform environment in order to isolate infrastructure workloads for two primary purposes: preventing
incurring billing costs against subscription counts and separating maintenance and management.

Infrastructure workloads are isolated workloads in addition to those services running on the control plane. At a minimum, a Red
Hat OpenShift cluster contains 2 worker nodes in addition to 3 control plane nodes. While control plane components critical
to the cluster operability are isolated on the masters, there are still some infrastructure workloads that by default run on the
worker nodes—the same nodes on which cluster users deploy their applications.

To qualify as an infrastructure node and use the included entitlement, only components that are supporting the cluster,
and not part of an end-user application, may be running on those instances. A list of workloads that can be executed in
infrastructure nodes can be found in the "Red Hat OpenShift control plane and infrastructure nodes" section in OpenShift
sizing and subscription guide for enterprise Kubernetes.

https://docs.openshift.com/container-platform/latest/installing/installing_bare_metal/installing-bare-metal.html#machine-requirements_installing-bare-metal
https://www.redhat.com/en/resources/OpenShift-subscription-sizing-guide-detail
https://www.redhat.com/en/resources/OpenShift-subscription-sizing-guide-detail

REFERENCE ARCHITECTURE

25

Portworx Storage Cluster Node Topologies

Portworx leverages node labels to identify fault domains and zones, which helps prevent availability issues in the event of an
entire zone failure. In cloud environments such as AWS, GCP, Azure, IBM, or VMware, Kubernetes nodes come prepopulated
with well-known failure domain labels. Portworx parses these labels to understand the cluster topology and manage data
distribution accordingly.

For bare metal workloads, these labels are not automatically provided but can be manually added to achieve the same
topology management. This allows for effective management of rack or datacenter configurations to enhance fault tolerance.

Key Node Labels for Fault Domain Management

Portworx looks for two primary node labels to automatically distribute replicas across fault domains:

• px/region: This label identifies the region in which a node is located.

• px/zone: This label identifies the zone within a region.

By default, Portworx ensures that replicas are distributed across different zones without requiring manual intervention beyond
labeling the OpenShift worker nodes that host the Portworx Storage cluster. This distribution ensures that if an entire zone
fails, the application data remains available as its replicas reside in other zones. Additionally, Portworx keeps replicas within
the same region to avoid data synchronization across metered or higher latency network connections.

You can label your nodes with the px/region and px/zone labels based on your availability requirements. For example, you
might label each rack in your datacenter as a different zone to ensure Portworx automatically deploys replicas across multiple
racks.

Optional Rack-Level Label

Portworx also supports an optional third label called px/rack. This label provides more granular control over replica placement
decisions:

• px/rack: This label specifies the rack information, allowing you to control which racks the replicas should be placed
on during deployment. By default Portworx will use the rack label information to distribute your replicas but you may
specify which racks the replicas should be deployed to through a storage class.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: px-postgres-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "2"
 shared: "true"
 racks: "rack1,rack2"

Using the px/rack label in conjunction with the px/region and px/zone labels allows you to implement specific placement logic
tailored to your environment’s needs.

REFERENCE ARCHITECTURE

26

Performance Considerations

Optimizing the performance of your Portworx storage cluster involves configuring various parameters tailored to your
deployment architecture and workload requirements. This section will explore several key areas for performance tuning,
including disaggregated and hyper-converged architectures, the use of journal devices, I/O profiles, and the nodiscard option
for managing data deletions efficiently. By carefully configuring these options, you can ensure that your Portworx storage
cluster operates efficiently, delivering reliable and high-performing storage services for your OpenShift workloads.

Disaggregated Architecture

In a disaggregated deployment, where dedicated storage nodes are used, you can enable higher resource consumption by
specifying the rt_ops_conf_high runtime option. This setting allows Portworx to utilize more resources on storage nodes,
enhancing performance. This runtime option should be considered if there are at least 64 CPUs per node. The following
example shows how to configure this option in your StorageCluster spec:

apiVersion: core.libopenstorage.org/v1
kind: StorageCluster
metadata:
 name: px-cluster
namespace: portworx
spec:
 image: portworx/oci-monitor:2.7.0
 ...
 runtimeOptions:
 rt_opts_conf_high: "1"

Hyper-converged Architecture

In a hyper-converged architecture, where applications run on the same hosts as storage, resource allocation must be carefully
managed to balance compute and storage performance. Configure the number of threads based on the number of cores
available on the host. For example, if your host has 16 cores:

• num_threads=16 sets the total number of threads.

• num_io_threads=12 allocates 75% of the total threads for I/O operations.

• num_cpu_threads=16 allocates threads for CPU-bound tasks.

These values can be specified in the runtimeOptions field as shown below:

apiVersion: core.libopenstorage.org/v1
kind: StorageCluster
metadata:
 name: px-cluster
namespace: portworx
spec:
 image: portworx/oci-monitor:3.1.0
 ...
 runtimeOptions:
 rt_opts_conf_high: "1"
 num_threads: "16"
 num_io_threads: "12"
 num_cpu_threads: "16"

REFERENCE ARCHITECTURE

27

Journal Device

Portworx recommends using a journal device to handle metadata writes efficiently. Journal writes are frequent and small,
benefiting significantly from the performance of SSDs or NVMe drives. The journal device should be 3GB, as Portworx will not
utilize more than this amount.

kind: StorageCluster
...
storage:
 devices:
 - /dev/sdb
 journalDevice: auto
...

Note: If you don't specify a journal device, Portworx will carve out 3GB out of the storage cluster to use automatically.

I/O Profiles

Optimizing I/O profiles based on workload types can significantly enhance performance. I/O profiles determine how Portworx
volumes interact with underlying storage to optimize traffic:

• auto: Switches between none (single replica) and db_remote (replication factor of 2 or higher).

• db_remote: Implements a write-back flush algorithm to coalesce multiple syncs within a 100ms window. Coalesced
syncs are acknowledged after they have been copied to memory on all replicas. This mode assumes all replicas do
not fail simultaneously in a 100ms window.

• journal: Performs stable writes to the journal and commits writes in batches to the backing storage, amortizing sync
costs.

• auto_journal: Detects incoming write patterns to determine whether the journal profile can improve performance.
It switches between none or journal I/O profiles based on data in the previous 24 seconds. Once a high enough
confidence level is determined it configures the volume to use the journal profile or avoid it.

• none: No I/O optimizations are done for the volume.

If no I/O profile is specified, Portworx uses the default I/O profile set during cluster setup, typically auto.

By carefully configuring these options, you can tailor your Portworx storage cluster to meet specific performance
requirements, ensuring efficient operation and optimal resource utilization across your Red Hat OpenShift environment.

Nodiscard Option

Certain applications, such as Kafka and Elasticsearch, frequently perform discard or delete operations, which can negatively
impact the overall performance of the Portworx cluster. To mitigate this effect, it is recommended to use the nodiscard
parameter.

When the nodiscard parameter is used, the Portworx volume is mounted with the nodiscard option. This configuration means
that data deleted from the filesystem is not immediately removed from the underlying block device. By avoiding immediate
discard operations, the system reduces the overhead associated with these operations, thereby improving performance.

REFERENCE ARCHITECTURE

28

However, because the deleted data remains on the block device, it is necessary to periodically run a filesystem trim operation
to clear out this data. This deferred deletion strategy helps maintain higher performance levels for applications that generate
a high volume of discard operations.

Below is an example of a storage class definition that includes the nodiscard option:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: px-storage-class
provisioner: kubernetes.io/portworx-volume
parameters:
 nodiscard: "true"
 # Other storage class parameters

By incorporating the nodiscard option, you can optimize the performance of your Portworx storage cluster, particularly for
applications with heavy discard/delete workloads, while managing data deletion in a more controlled manner.

When using the nodiscard option, Portworx recommends configuring autofstrim in the cluster to periodically delete unused
data blocks.

pxctl cluster options update --auto-fstrim on

Processor States

C-states, or CPU idle states, are power-saving modes that processors use to reduce energy consumption when the CPU is
idle. Each C-state represents a different level of power savings, with deeper states saving more power but taking longer for
the CPU to wake up from, potentially introducing latency in performance-sensitive applications.

For optimal performance, especially in high-throughput and low-latency environments like those managed by Portworx, it's
recommended to set the CPU to C0 to ensure maximum responsiveness. If power savings are necessary, shallower C-states
such as C1 or C1E can be considered. This approach minimizes latency and ensures that storage operations are not adversely
affected by power state transitions. Properly configuring C-states helps maintain the desired performance levels and supports
the overall efficiency of the Portworx deployment.

Storage I/O Contention

In a shared Kubernetes environment like Red Hat OpenShift, "noisy neighbors" can significantly impact the performance
of other applications. "Noisy neighbors" refer to workloads that consume excessive I/O or network bandwidth, degrading
the performance of other applications running on the same cluster. To mitigate this issue, Portworx offers a feature called
Application I/O Control.

Application I/O Control allows you to set limits on I/O operations and throughput for individual applications, ensuring that no
single application can monopolize the cluster's resources. By defining these limits, you can maintain a balanced and efficient
environment, preventing performance degradation caused by resource-hungry applications.

Note that Application I/O Control may require reconfiguring the cgroups version on Red Hat OpenShift nodes. CgroupsV2
support is planned for an upcoming Portworx release. For detailed information on configuring cgroups and implementing
Application I/O Control, refer to the Red Hat OpenShift and Portworx documentation.

REFERENCE ARCHITECTURE

29

Security Considerations

Securing your Portworx cluster involves two key areas: authorization, which protects Portworx volumes from unauthorized
access and encryption, which secures the data within the volumes by encrypting it.

Authorization

Authorization in Portworx adds an extra layer of security by implementing role-based access control (RBAC) to protect
volumes from unauthorized access. This ensures that only authenticated and authorized users can access the volumes. When
security is enabled, Portworx creates a user token for the ‘kubernetes’ user by default.

To enable authorization in Portworx, add the spec.security.enabled: true stanza in the StorageCluster YAML configuration:

kind: StorageCluster
...
spec:
 ...
 security:
 enabled: true
...

Once authorization is enabled, only Kubernetes users will be able to access Portworx volumes if persistent volume claims
(PVCs) are created using storage classes that include the authentication token. By default, “guest access” is allowed if no
authentication token is included in the storage class. To disable guest access, refer to the Portworx documentation.

Encryption

Portworx recommends protecting your persistent volumes with encryption. All encrypted volumes are protected by a
passphrase. Portworx uses this passphrase to encrypt the volume data at rest as well as in transit. It is recommended to
store these passphrases in a secure secret store such as Hashicorp Vault but Portworx has support for additional secret store
providers such as IBM Key Management, AWS KMS, Google Cloud KMS, Azure Key Vault, and the Kubernetes Secrets store.

The passphrases can be used in one of two ways for encrypting volumes, a per-volume secret, which uses a different secret
passphrase for each encrypted volume and a cluster-wide secret, which uses a common secret for all encrypted volumes
within the cluster.Each method has its own advantages and disadvantages, which should be considered when designing your
Portworx deployment.

Per-volume Secret Encryption

Per-volume encryption provides the highest level of security, as exposing a single encryption passphrase would only affect
one persistent volume, not the entire cluster. However, managing multiple encryption keys can be challenging, especially
when using Portworx Disaster Recovery to move volumes to another cluster that might not have all the necessary encryption
keys.

When using a per-volume encryption method, a secret needs to be created before each persistent volume is requested. The
name of this secret must be maintained as it is used later on. For example:

oc create secret generic volume-secrets-1 -n portworx --from-literal=mysql-pvc-secret-key-1=mysecret-passcode-for-
encryption-1

REFERENCE ARCHITECTURE

30

Then a second secret must be created that refers to the initial secret from above. This secret identifies which secret to use
for encryption, the namespace the secret exists in, the secret key, and the secret context.

oc create secret generic mysql-pvc-1 -n csi-test-demo --from-literal=SECRET_NAME=volume-secrets-1 --from-
literal=SECRET_KEY=mysql-pvc-secret-key-1 --from-literal=SECRET_CONTEXT=portworx

Create a CSI Storage class for the encrypted PVCs:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: px-csi-db-encrypted-pvc-k8s
provisioner: pxd.portworx.com
parameters:
 repl: "3"
 secure: "true"
 io_profile: auto
 csi.storage.k8s.io/provisioner-secret-name: ${pvc.name}
 csi.storage.k8s.io/provisioner-secret-namespace: ${pvc.namespace}
 csi.storage.k8s.io/node-publish-secret-name: ${pvc.name}
 csi.storage.k8s.io/node-publish-secret-namespace: ${pvc.namespace}
reclaimPolicy: Delete
volumeBindingMode: Immediate
allowVolumeExpansion: true

Then request PVC’s as normal, using this storage class. The templatized parameters in the storage class point to the name
and namespace of the PVC itself. This ensures that each PVC requires a separate secret of the same name in the same
namespace. This way, each PVC gets encrypted with its own passphrase.

Cluster-wide Encryption

Using a cluster-wide secret for encryption simplifies key management, as a single key is used for all volumes in the cluster.
While this makes management easier, it means that if the key is compromised, all volumes are at risk. This approach is
particularly useful for Portworx Disaster Recovery, as only one key needs to be migrated along with the applications.

When using the cluster-wide secret for encrypting volumes, simply create a secret in your secrets provider. This secret will
house the passphrase for your clusterwide encryption.

oc -n portworx create secret generic <your-secret-name> \
 --from-literal=cluster-wide-secret-key=<value>

Run a command to set the new secret as the cluster-wide secret used by Portworx.

PX_POD=$(oc get pods -l name=portworx -n portworx -o jsonpath='{.items[0].metadata.name}')
oc exec $PX_POD -n portworx -- /opt/pwx/bin/pxctl secrets set-cluster-key \
 --secret cluster-wide-secret-key

REFERENCE ARCHITECTURE

31

Then specify the secure: “true” parameter in the storage classes to be encrypted and it will automatically use the passphrase
in the cluster-wide secret to encrypt the volumes created from the storage class.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: px-secure-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 secure: "true"
 repl: "3"

Monitoring Considerations

Monitoring is a vital aspect of managing and maintaining both Red Hat OpenShift clusters and Portworx Enterprise storage
solutions. Effective monitoring ensures the health, performance, and reliability of your infrastructure, allowing for proactive
issue resolution and optimized resource utilization.

Monitoring in Red Hat OpenShift

The OpenShift Container Platform monitoring stack is based on the Prometheus open source project and its wider ecosystem.
The OpenShift Container Platform includes a preconfigured, preinstalled, and self-updating monitoring stack that provides
monitoring for core platform components. You also have the option to enable monitoring for user-defined projects.

A set of alerts are included by default that immediately notify administrators about issues with a cluster. Default dashboards
in the OpenShift Container Platform web console include visual representations of cluster metrics to help you to quickly
understand the state of your cluster. With the OpenShift Container Platform web console, you can view and manage metrics,
alerts, and review monitoring dashboards.

In the Observe section of the OpenShift Container Platform web console, you can access and manage monitoring features
such as metrics, alerts, monitoring dashboards, and metrics targets.

After installing OpenShift Container Platform, cluster administrators can optionally enable monitoring for user-defined
projects. By using this feature, cluster administrators, developers, and other users can specify how services and pods are
monitored in their own projects. As a cluster administrator, you can find answers to common problems such as user metrics
unavailability and high consumption of disk space by Prometheus, an open-source solution for monitoring and alerting in Red
Hat OpenShift, in Troubleshooting monitoring issues.

Monitoring in Portworx Enterprise

Monitoring is a critical component of managing your Portworx storage cluster effectively. It is essential not only for leveraging
advanced features such as AutoPilot and Application I/O control but also for ensuring the overall health, performance, and
reliability of your storage infrastructure within your Kubernetes cluster.

A robust monitoring solution allows you to proactively identify and resolve issues, optimizing performance and ensuring
continuous availability. By tracking key performance metrics, you can fine-tune configurations and ensure that applications
run smoothly.

Effective monitoring also supports capacity planning by tracking usage trends, allowing you to anticipate future storage needs
and allocate resources efficiently. Furthermore, it plays a vital role in compliance and auditing, helping you maintain logs and
records to meet industry standards and regulatory requirements. Understanding resource utilization through monitoring can
also optimize costs and improve overall efficiency.

Implementing a comprehensive monitoring strategy is crucial for maintaining a high-performing, reliable, and secure storage
environment, which is essential for supporting your Kubernetes workloads.

REFERENCE ARCHITECTURE

32

Prometheus

Prometheus is an open-source monitoring and alerting toolkit designed specifically for reliability and scalability in dynamic
environments like Kubernetes. In a Red Hat OpenShift cluster, Prometheus is used to collect and store metrics data, providing
real-time insights into the performance and health of applications and infrastructure. It scrapes metrics from configured
endpoints, stores them efficiently, and allows for powerful querying using its flexible query language, PromQL.

Portworx typically deploys its own version of Prometheus for monitoring activities of the storage cluster, but in a Red Hat
OpenShift deployment, it is deployed with OpenShift itself. Portworx seamlessly integrates with the Openshift prometheus
stack and provides several key metrics that can be used to monitor the health and performance of the Portworx cluster.
Before deploying Portworx in the Red Hat OpenShift cluster, ensure that monitoring for user-defined projects is enabled.
Follow the steps provided in the “Create the OpenShift monitoring solution” article of the Portworx documentation for
guidance.

To query Portworx metrics in the Red Hat OpenShift web console:

1.	 Find the Observe dropdown, then select the Metrics dashboard.

2.	 On the Metrics page, enter any Portworx metric, all of which start with 'px_'. For example, to check CPU usage on the

Portworx cluster, use the metric 'px_cluster_cpu_percent'.

FIGURE 14  OpenShift metrics page

REFERENCE ARCHITECTURE

33

You can also check status of Portworx metrics targets:

1.	 Find the Observe dropdown, then select the Targets dashboard

2.	 Filter for “Portworx” in the text filter:

FIGURE 15  Portworx targets in the OpenShift console

Alertmanager

Alertmanager is a critical component of the Prometheus ecosystem, responsible for handling alerts generated by Prometheus.
In a Red Hat OpenShift cluster, Alertmanager manages the lifecycle of alerts, including deduplication, grouping, and routing
to the appropriate receiver endpoints such as email, Slack, or other notification systems. It ensures that alerts are delivered
to the right people at the right time, facilitating rapid response to issues. With its flexible configuration, Alertmanager allows
you to define sophisticated alerting rules and escalation policies, helping to maintain the stability and reliability of your
environment.

Similar to Prometheus metrics, you can set up user-defined alerts in OpenShift to receive standard Prometheus alerts
provided by Portworx. To enable these alerts in your Red Hat OpenShift cluster, follow the instructions in the Enabling Alert
Routing for User-Defined Projects article of the OpenShift documentation.

REFERENCE ARCHITECTURE

34

After enabling user-defined alerts, access the Portworx alert rules via the OpenShift web console:

1.	 Under the Observe, select the Alerting dashboard

2.	 On the Alerting dashboard, select the 'Alerting rules' tab, and apply the 'namespace=portworx' filter to view the specific rules.

FIGURE 16  OpenShift alerting

Grafana Dashboards

Portworx provides five out-of-the-box Grafana dashboards to help monitor its status and performance. Since prometheus will
be installed with your Red Hat OpenShift cluster, Grafana can connect to that instance to visualize the performance metrics
by obtaining the Thanos route. To deploy these dashboards in your own Grafana instance on OpenShift, follow the steps
outlined in the Portworx documentation. If Grafana is not already installed on your OpenShift cluster, refer to the Grafana
documentation for installation and configuration instructions.

Portworx Grafana dashboards include:

• Internal KVDB (ETCD)

• Portworx Cluster

• Portworx Nodes

• Portworx Volumes

• Portworx Performance

REFERENCE ARCHITECTURE

35

FIGURE 17  Grafana dashboard

Air-gapped Cluster Considerations

Operating Red Hat OpenShift and Portworx in air-gapped clusters presents unique challenges and considerations, as these
environments are completely isolated from the Internet. This section explores the strategies and best practices for deploying
and managing OpenShift and Portworx in such restricted settings. We will cover essential topics such as preparing the
necessary installation files, configuring updates, and ensuring security and compliance without direct Internet access. By
understanding and implementing these guidelines, you can maintain robust, secure, and efficient operations in your air-
gapped clusters.

Red Hat OpenShift Considerations

When deploying a Red Hat OpenShift cluster in an air-gapped environment, a local image registry is essential for storing
container images that are not accessible over the Internet. When deploying a Red Hat OpenShift cluster in an air-gapped
environment, a local image registry is essential for storing container images that are not accessible over the Internet. If you
do not have an existing local repository to use, Red Hat offers a container registry that can be integrated into the OpenShift
installation, but Red Hat recommends an object storage solution for the registry’s storage layer. In this scenario, refer to the
Red Hat OpenShift documentation to determine a certified Object Storage solution to store container images.

Portworx Considerations

Portworx is often installed in an air-gapped environment to run critical applications that should not be made available over
public networks such as the Internet. The primary consideration for installing Portworx in an air-gapped environment is to
store the Portworx images in a local repository to be used for installations and upgrades.

In an air-gapped environment administrators should download the Portworx cluster images needed and push them into
a local container registry such as the OpenShift image registry. Instructions for this can be found in the official Portworx
documentation. Portworx has provided scripts to download these images for each particular Kubernetes and Portworx version.
The images should be available to the OpenShift cluster before installing, scaling, or upgrading Portworx.

Telemetry and integration with Pure1® is not available for air-gapped clusters.

REFERENCE ARCHITECTURE

36

Operational Considerations
When deploying Portworx on Red Hat OpenShift bare metal nodes, it's important to understand the unique operational
considerations that come into play. This section delves into critical aspects that ensure smooth and efficient operation,
including installation information, data protection information, availability best practices, and monitoring. By addressing these
factors, you can maximize the reliability and efficiency of your Portworx deployment, ensuring that your storage solutions are
robust, secure, and performant in a bare metal environment.

Installation Methods and Procedures

This section of the reference architecture explains instructions for proper installation of a Portworx Enterprise storage
cluster on Red Hat OpenShift bare metal nodes. This section includes installation procedures as well as monitoring and
troubleshooting information for the installation process.

Red Hat OpenShift

Red Hat OpenShift User-Defined Monitoring (UDM) allows developers and administrators to extend the monitoring capabilities
of OpenShift by integrating their own metrics and monitoring configurations. This feature enables the collection and analysis
of custom application metrics alongside the default metrics gathered by OpenShift, providing a comprehensive view of
application performance and health.

Portworx uses prometheus to monitor storage metrics and is critical for features like Autopilot and ApplicationI/O Control. The
latest releases of Red Hat OpenShift don’t allow applications to deploy their own Prometheus instances, so you must enable
user-defined workload monitoring in OpenShift so that Portworx may use the OpenShift instance for monitoring metrics.

Consult the Red Hat OpenShift documentation for enabling User-Defined Monitoring, before installing Portworx Enterprise.

REFERENCE ARCHITECTURE

37

Portworx

To start the installation of Portworx on your deployed OpenShift cluster, you first need to create the Portworx storage cluster
configuration using Portworx Central. Portworx Central offers a graphical user interface (GUI) that simplifies the process of
building the necessary YAML configuration file for your OpenShift cluster.

FIGURE 18  Portworx Central specification generator

https://central.portworx.com/

REFERENCE ARCHITECTURE

38

Through the GUI, you can customize various aspects of your Portworx Storage Cluster configuration, ensuring it meets your
specific requirements before applying it to the cluster. When you’re done with the configuration wizard, you’ll be presented
with a screen displaying the Portworx Operator YAML link, and the Storage Cluster Configuration file.

FIGURE 19  Portworx Central specification file

REFERENCE ARCHITECTURE

39

Portworx recommends installing the Portworx Operator from OperatorHub in the OpenShift Console instead of through the
link in Portworx Central. When deploying the Portworx operator, create a new project called “portworx” and then deploy the
operator through OperatorHub into this namespace. Also be sure to enable the Console plugin to get additional Portworx data
in the OpenShift Console.

FIGURE 20  OpenShift Operator installation

Note: For air-gapped clusters, the Portworx Operator can be downloaded and stored in the local repository to be used instead of

operator-hub.

REFERENCE ARCHITECTURE

40

FIGURE 21  Portworx Operator in OperatorHub

When the Portworx Operator has been installed successfully, you can create a StorageCluster config from the OpenShift
Console by pasting in the storage cluster config from the Portworx Central wizard.

FIGURE 22  Creating a storage cluster in OpenShift Console

Note: Portworx images can be downloaded and stored in a local repository before installation in an air-gapped environment.

REFERENCE ARCHITECTURE

41

An example storage cluster configuration file created from Portworx Central can be found below and can be edited to meet
your environment’s needs. Administrators should always create a new spec from Portworx Central for deploying a storage
cluster. The information below is for informational purposes only.

kind: StorageCluster
apiVersion: core.libopenstorage.org/v1
metadata:
 name: px-cluster-OMITED
 namespace: portworx
 portworx.io/is-openshift: "true"
spec:
 deleteStrategy:
 type: UninstallAndWipe
 image: portworx/oci-monitor:3.1.3
 imagePullPolicy: Always
 security:
 enabled: true
 kvdb:
 internal: true
 storage:
 devices:
 - /dev/sdb
 journalDevice: auto
 kvdbDevice: /dev/sdc
 network:
 dataInterface: br-ex
 mgmtInterface: ens224
 secretsProvider: k8s
 startPort: 17001
 stork:
 enabled: true
 args:
 webhook-controller: "true"
 autopilot:
 enabled: true
 csi:
 enabled: true
 monitoring:
 telemetry:
 enabled: false
 prometheus:
 enabled: false
 exportMetrics: true

Note the following details on the example specification above that matches the recommendations from this reference
architecture.

This section of the cluster config enables security and authorization for the storage cluster.

spec:
...
 security:
 enabled: true
...

REFERENCE ARCHITECTURE

42

The storage cluster is using an internal etcd instance for a KVDB. This can be configured with the “internal: true” key-value
pair. If using an external etcd cluster, each of the endpoints for the etcd cluster can be listed under the kvdb specification.

spec:
 kvdb:
 internal: true
...

The following drives are used as storage devices on our nodes to form the storage cluster. In this instance we only have a
single drive used for the node. Additional devices can be added as needed for your environment. It also uses this same drive
for the journal device since it's configured for auto. The journal device can be specified manually here if a 3GB or larger device
with the same or better storage characteristics can be used. Lastly, a KVDB Device is used, and the device to use is specified.

The storage section of the Portworx storage cluster specification may look different if using CloudDrives. In those instances,
device sizes will be specified instead of device identifiers.

storage:
...
 devices:
 - /dev/sdb

 journalDevice: auto
 kvdbDevice: /dev/sdc
...

The networking was specified to use a different NIC for the storage replication network vs the management network. This is
used to segment storage traffic on a different storage network to avoid network congestion/contention.

spec:
...
 network:
 dataInterface: ens224
 mgmtInterface: br-ex
...

Telemetry and Monitoring are enabled.

spec:
...
 monitoring:
 telemetry:
 enabled: true
 prometheus:
 enabled: false
 exportMetrics: true
...

REFERENCE ARCHITECTURE

43

If the cluster architecture is disaggregated, the storage cluster config should have two sections for nodes. Each section
correlates with the storage or storage less nodes since storage less nodes don’t need backing disks. An example would be
the snippet below where we’ve identified the storage and storageless nodes based on a label, which would be set in the
OpenShift cluster’s machine set, discussed earlier in this reference architecture.

spec:
 image: portworx/oci-monitor:3.1.0
 storage:
 devices:
 - /dev/sdb
 nodes:
 - selector:
 labelSelector:
 matchLabels:
 portworx.io/node-type: "storage"
 storage:
 devices:
 - /dev/sdb

 - selector:
 labelSelector:
 matchLabels:
 portworx.io/node-type: "storageless"
 storage:
 devices: []

Monitoring During Installation

Ensuring a smooth and successful installation of Portworx on Red Hat OpenShift bare metal nodes includes monitoring
throughout the process. This section outlines the steps and tools needed to oversee the installation from initial setup to final
deployment.

Portworx

To monitor the status of the Portworx storage cluster, the pods in the portworx namespace can be monitored. The command
below will show all the pods being deployed for the storage cluster. These pods may show up in a failed state and restart for a
few minutes until other pods in the cluster are available.

oc get pods -n portworx

REFERENCE ARCHITECTURE

44

The storage cluster pods will take some time to initialize the disks and build the cluster.

FIGURE 23  Portworx Storage cluster deploying

When all of the pods are running, you can proceed to the Post-installation Validation section below to ensure the cluster is
running in a healthy state.

FIGURE 24  Portworx Post-installation Objects

If you need to troubleshoot the deployment, you may tail the logs of the px-cluster pods in the portworx namespace. These
pods will show details about what is happening when trying to initialize the storage cluster. This includes benchmarking
drives, configuring the network connections, and creating the storage pools.

oc logs -n portworx [px-cluster-pod-name-here]

REFERENCE ARCHITECTURE

45

Post-installation Validation

After successfully installing Portworx on your Red Hat OpenShift bare metal nodes, it is important to perform a series
of validation checks to ensure the deployment is fully operational and configured correctly. This section provides a
comprehensive guide to the post-installation validation process, detailing essential steps such as verifying pod statuses,
checking storage pools, and confirming data replication. By following these validation procedures, you can identify and
address any potential issues early, ensuring that your Portworx deployment is reliable, efficient, and ready to handle your
storage needs.

Portworx Validation

Once your Portworx Storage Cluster pods have been deployed and are in a running and ready state, you can check the status
of the storage cluster by using the pxctl command line tool that is installed within the storage cluster pods.

First, you must obtain a Token with permissions to run pxctl commands against the storage cluster. You may skip this step if
you did not enable “security” when deploying your storage cluster.

ADMIN_TOKEN=$(oc -n portworx get secret px-admin-token --template='{{index .data "auth-token" | base64decode}}')

Once the Admin token has been obtained, run the following command to find one of the Portworx Storage Cluster nodes and
put it into an environment variable.

PX_POD=$(kubectl get pods -l name=portworx -n portworx -o jsonpath="{.items[0].metadata.name}")

We’ll use the Pod and the Admin token to create a cluster context. To do this run the command below:

oc -n portworx exec -ti $PX_POD -- /opt/pwx/bin/pxctl context create admin --token=$ADMIN_TOKEN

Finally, you can exec into the Pod with the pxctl command line utility to query the Portworx storage cluster with a pxctl status
command.

oc -n portworx exec -ti $PX_POD -- /opt/pwx/bin/pxctl status

FIGURE 25  PXCTL status

To ensure your Portworx installation is successful, consult “Verify Your Portworx Installation” in the Portworx documentation
for detailed command instructions. Once you confirm that Portworx is installed correctly, you can proceed to create your first
Persistent Volume Claim (PVC).

REFERENCE ARCHITECTURE

46

Workload and Volume Considerations

When designing and deploying applications on Portworx Enterprise, understanding the nuances of workload and volume
management is important for performance, storage costs, and reliability. This section delves into key considerations for
managing workloads and storage volumes, with a particular focus on the differences between in-app replication and storage
array replication. By exploring these approaches, we will provide insights into their respective benefits, use cases, and
potential challenges, enabling you to make informed decisions to best support your application's storage needs.

In-app Replication vs Portworx Replication Factor

Data availability is a critical aspect of any storage and application infrastructure, ensuring that data is accessible whenever
needed, despite hardware failures or other disruptions. High data availability is essential for maintaining business continuity,
minimizing downtime, and ensuring that applications run smoothly without interruption. There are several ways to accomplish
this but in all cases it involves having extra copies of your data in different fault domains. Using Portworx as your storage
platform opens up more options for high data availability.

Portworx storage classes enable end-users to deploy workloads with multiple replicas, which are complete copies of the data
stored on different storage nodes within the cluster. Each replica ensures data redundancy and availability. Storage classes
can be configured with repl1, repl2, or repl3, where repl1 indicates a single copy of the data with no redundancies, repl2
provides two copies, and repl3 ensures three copies of the data.

The decision around when to use which replication factor comes down to the service level agreements around the availability
of your applications, the cost to house multiple copies of the data, and what capabilities the backing disks for the storage
pool contain. Under most circumstances Portworx recommends using repl2 or repl3 to provide data availability for your
applications. This decision does mean that there are multiple copies of your data spread across nodes, and thus uses two or
three times the amount of disk space. However, if the backing disks are provided by a storage array such as a Pure FlashArray,
deduplication can be enabled to remove this concern.

FIGURE 26  Portworx replication factor

In other cases, the applications themselves might perform replication on their own. Some databases work as part of a cluster
and replicate the data above the storage layer. In this case there is already a copy of your data at the application level so
using repl1 at the storage layer is sufficient. In this scenario the application (such as a database) is responsible for the high
availability of the data and not the Portworx storage layer. It is possible to use repl 2 or repl 3 with app based replication, but
you’re increasing the number of copies of your data that exist.

REFERENCE ARCHITECTURE

47

FIGURE 27  Portworx Replication with Application Replication

Data Locality

Data locality refers to the practice of storing data close to where it is processed to minimize latency and improve
performance. In a distributed storage system like Portworx, data locality is a key consideration for optimizing application
performance and resource utilization.

Portworx will attempt to place replicas on the same nodes where the Kubernetes application is running to provide the best
performance. This is completed with the open-source project maintained by Portworx, called Storage Orchestrator Runtime
for Kubernetes, or STORK. There are other factors to consider with data locality and placement including the fault domains
explained earlier in this reference architecture, but manual considerations can also be taken into account.

Portworx has affinity rules to keep replicas co-located on the same nodes. This might be important for an application
mounting two volumes where data is being copied from one persistent volume to another. Using an affinity rule ensures that
this data doesn’t need to be replicated across nodes which might increase latency.

Similarly, the ability to keep volumes on different nodes is also possible with anti-affinity rules. Perhaps if you’re using a
replication factor of 1 with database replication, it might be important to keep those two volumes on separate nodes so a
hardware failure doesn’t affect both volumes for the same application simultaneously.

Affinity and anti-affinity rules can be configured on a per volume basis with the pxctl command line utility, or at the
Kubernetes storage class.

REFERENCE ARCHITECTURE

48

Scaling

Scaling a Red Hat OpenShift and Portworx cluster is crucial for maintaining performance, availability, and efficient resource
utilization in dynamic environments. This involves adjusting the number of nodes in the cluster and the storage capacity
managed by Portworx to meet changing workloads and demands. While application scaling is important, ensuring that the
underlying infrastructure can scale effectively is essential for supporting those applications. By implementing robust scaling
strategies, you can optimize resource usage, reduce costs, and ensure that your OpenShift and Portworx clusters remain
responsive and resilient, even during peak usage times.

Red Hat OpenShift can scale horizontally by adding more nodes to a cluster, which is ideal for handling increased workloads
helping to ensure high availability. Vertical scaling involves increasing the resources of existing nodes and can be used for
workloads that require more compute or memory. It is important to monitor cluster performance and resource utilization
regularly so that future needs can be met. For more details, reference the Red Hat OpenShift documentation for their scaling
guide.

Note: Red Hat OpenShift documentation may require a login.

Portworx
There are several objects that might need to be scaled during the normal course of operating Portworx on Red Hat OpenShift.
This section will break these down into two categories: persistent volumes and the storage cluster.

Persistent Volume Scaling

Applications often require more storage over time. Whether this is more data in a database, more log files, or other artifacts
being generated over time, administrators need to account for what happens when a persistent volume in Kubernetes runs out
of capacity. Portworx allows users to modify the size of persistent volumes manually or automatically.

Persistent volumes created by Portworx through a storage class can be manually resized assuming the storage class has the
parameter “allowVolumeExpansion: true” configured and the PVC must be in use by a pod. If these conditions are true, you
can use the following Kuberenetes command to resize the persistent volume claim.

kubectl edit pvc mssql-data

When complete you should see a VolumeresizeSuccessful message in the PVC object.

Normal VolumeResizeSuccessful 5s volume_expand ExpandVolume succeeded for volume default/
example-pvc

The ability to manually resize a persistent volume is important, but Portworx instead recommends using the Portworx
AutoPilot feature to automatically resize volumes when they get low on disk space. This prevents an issue where OpenShift
administrators aren’t available immediately to resize a disk that is quickly running out of space, and reduces the operational
overhead of bespoke update to the cluster.

Installing AutoPilot involves deploying a configuration spec with a url to the thanos-querier route. This is needed because
AutoPilot needs access to monitoring information stored in Prometheus to understand how much capacity a persistent volume
has available.

REFERENCE ARCHITECTURE

49

An example Autopilot spec is below:

...
spec:
 autopilot:
 enabled: true
 image: <autopilot-image>
 providers:
 - name: default
 params:
 url: https://<THANOS-QUERIER-HOST>
 type: prometheus
...

If your Portworx StorageCluster was configured with Security, you’ll also need to modify the storage cluster to include the
PX_SHARED_SECRET information.

Example StorageCluster Config Snippet:

 autopilot:
...
 env:
 - name: PX_SHARED_SECRET
 valueFrom:
 secretKeyRef:
 key: apps-secret
 name: px-system-secrets

Note: To deploy AutoPilot in an air gapped environment, the autopilot images must be downloaded and placed in a local image

registry like OpenShift Container Registry.

For full installation instructions for AutoPilot, consult the Portworx documentation.

Once AutoPilot is installed and configured, Administrators can create rules that dictate how and when persistent volumes
should be expanded. An AutoPilot rule has four main sections:

Section Description

Selector A key value pair (tag) on an object that AutoPilot should be monitoring such as a PVC.

Namespace Selector A key value pair (tag) on the namespaces where AutoPilot should monitor.

Condition The metric that should trigger an AutoPilot action to run.

Action Defines what action to take when the conditions are met.

TABLE 8  AutoPilot configuration elements

If a PVC with the selector tag applied, is also in a namespace with the namespace selector applied, and it matches the
condition, the action will be applied. So autopilot can automatically resize your volumes when free space becomes too low.

REFERENCE ARCHITECTURE

50

An example AutoPilot rule can be found below.

apiVersion: autopilot.libopenstorage.org/v1alpha1
kind: AutopilotRule
metadata:
 name: volume-resize
spec:
 selector:
 matchLabels:
 autoresize: true
 namespaceSelector:
 matchLabels:
 resize: true
 conditions:
 expressions:
 - key: "100 * (px_volume_usage_bytes / px_volume_capacity_bytes)"
 operator: Gt
 values:
 - "80"
 actions:
 - name: openstorage.io.action.volume/resize
 params:
 scalepercentage: "100"
 maxsize: "400Gi"

The autopilot rule above applies to any PVCs with a autoresize: true tag, in a namespace with a resize: true tag, and is using
greater than 80% of the PVC’s total capacity. The volume will be resized 100% (or doubled) with a maximum size of 400Gi.

Portworx recommends setting a maxsize for scaling so that volumes don’t continually resize themselves in perpetuity, using
up all the storage in the cluster. Applications that need resized continuously, likely have an issue that needs to be investigated
by an Administrator to find out why it’s using up so much capacity.

Please see the Portworx documentation for further information about installation and usage of AutoPilot rules in your
OpenShift cluster.

Storage Cluster Scaling

Over time, the initial capacity provisioned to the Portworx Storage cluster may not be adequate to support the addition of new
applications or application growth. If this occurs there are several ways to expand the Portworx storage cluster:

• Resize backing disks: The easiest way to increase the overall size of the Portworx storage cluster is increasing the
size of the backing drives. If your backing devices come from a hardware storage array, vertically scaling the volumes
or LUNs presented to the Portworx storage nodes is the preferred way to expand the volumes. This is because no
data movement has to happen to rebalance the cluster. This option requires no downtime for the storage cluster.

• Add backing disks: Horizontally scaling the number of backing drives per storage nodes is an alternative method to
expand the storage cluster. The new drives should match the existing drives in terms of size and IOPS. This operation
requires no downtime for the Portworx storage cluster but may involve a significant amount of data movement since
the existing data in the cluster must be re-striped. During this re-striping period, the pool runs in a degraded mode.

• Expand the cluster: In a hyper-converged cluster, every node in the cluster also provides storage. So another way
to expand the storage cluster size is to horizontally scale the nodes in the cluster. In this model, be sure to expand
the cluster across availability zones and in numbers that coincide with your preferred replication factor. For example,
adding a single node to a cluster constrained by storage capacity, where applications use repl3 might not alleviate
storage pressure because there isn’t room for the replicas. In this case you’d want to add three nodes to the cluster.

REFERENCE ARCHITECTURE

51

Additional storage nodes can be added for a disaggregated storage cluster as well by adding additional OpenShift worker
nodes to the cluster and tagging them with portworx.io/node-type: storage labels to identify that they will participate in
Portworx the storage cluster.

Backup and Disaster Recovery

When storing data for production environments, it is imperative to implement backup and recovery strategies to protect
against data loss and ensure business continuity. In a Kubernetes environment we can think of the cluster as ephemeral and
not a critical item to protect. However, the applications, their metadata, and their persistent data must be protected from
accidental deletions, site failures, and natural or manmade disasters.

While disaster recovery and data protection are critical concerns to address for any production environment they are outside
the scope of this reference architecture. For information about design decisions for backup and disaster recovery please see
the Portworx Backup and Disaster Recovery addendum document which compliments this reference architecture.

Upgrading

Upgrading Portworx on an OpenShift cluster involves two distinct components: the OpenShift cluster itself and the Portworx
storage cluster. Each component has specific requirements for performing an in-place upgrade, including hardware
specifications, kernel versions, and Kubernetes versions. Understanding and meeting these requirements is crucial to ensure a
smooth and successful upgrade process without downtime.

Red Hat OpenShift

Before upgrading Red Hat OpenShift, it is essential to verify that the new version is compatible with Portworx. In some
instances, you may need to upgrade Portworx before proceeding with the OpenShift upgrade. To ensure seamless operation
of your OpenShift cluster with Portworx during and after the upgrade, please follow these best practices:

• Kernel compatibility: If the new OpenShift version includes a new kernel, ensure that the current version of Portworx
is compatible with this kernel version.

• Kubernetes compatibility: If the new OpenShift version includes a new Kubernetes version, verify that the currently
deployed version of Portworx is compatible with it.

• OpenShift compatibility: Confirm that the deployed version of Portworx is compatible with the new version of
OpenShift you plan to use.

• Cluster health: Ensure that the Portworx cluster is healthy.

• KVDB health: Verify that the Portworx KVDB is healthy and that all three instances of KVDB are up and running.

For Red Hat OpenShift upgrade instructions please consult the official Red Hat OpenShift documentation.

REFERENCE ARCHITECTURE

52

Portworx

As with an OpenShift upgrade, it's important to check version compatibility with the underlying Red Hat OpenShift cluster.
Ensure that the Kubernetes version, OpenShift version, and OS Kernel versions are supported prior to upgrading Portworx.

Before starting the upgrade process ensure that the Portworx deployment is healthy. As a pre-upgrade step run this command
to check the status of all of the Portworx pods before attempting an upgrade.

oc get pods -n portworx

The results should show pods all in a running and ready status.

FIGURE 28  Portworx objects before upgrades

If any pod is not in this state please fix the pod(s) before starting the upgrade. Check the Troubleshooting section of the
Portworx official documentation or contact Portworx support for further assistance.

Just as with the post-installation steps, you must obtain a token with permissions to run pxctl commands against the storage
cluster. You may skip this step if you did not enable “security” when deploying your storage cluster.

ADMIN_TOKEN=$(oc -n portworx get secret px-admin-token --template='{{index .data "auth-token" | base64decode}}')

Once the Admin token has been obtained, run the following command to find one of the Portworx Storage Cluster nodes and
put it into an environment variable.

PX_POD=$(kubectl get pods -l name=portworx -n portworx -o jsonpath="{.items[0].metadata.name}")

REFERENCE ARCHITECTURE

53

We’ll use the Pod and the Admin token to create a cluster context. To do this run the command below.

oc -n portworx exec -ti $PX_POD -- /opt/pwx/bin/pxctl context create admin --token=$ADMIN_TOKEN

Finally, you can exec into the Pod with the pxctl command line utility to query the Portworx Storage Cluster with a pxctl status
command.

oc -n portworx exec -ti $PX_POD -- /opt/pwx/bin/pxctl status

FIGURE 29  Storage cluster status pre-upgrade

Similar to previous steps, ensure all Portworx nodes are online and errors or warnings are not displayed in the command
above.

Next check all Portworx KVDB instances are running and healthy by running the command below.

oc -n portworx exec $PX_POD -- /opt/pwx/bin/pxctl sv kvdb members

FIGURE 30  List of KVDB members

All KVDB instances must be healthy and one of the nodes should be a leader.

If any pod is not in this state please fix the pod(s) before starting the upgrade. Check the Troubleshooting section of the
Portworx official documentation or contact Portworx support for further assistance.

REFERENCE ARCHITECTURE

54

Portworx Operator Upgrade

After all prerequisites above have been completed the first component to upgrade is the Portworx operator. By default Red
Hat OpenShift automatically upgrades the operator when a new version is released, but if you disable automatic upgrades
then you have to manually upgrade the operator to the latest version. You can do that in the OpenShift web console:

1. Under the Operators dropdown, select the Installed Operators dashboard.

2. Select the Portworx project and approve the upgrade to the latest version.

3. Run the following command to confirm Portwox operator is running after the upgrade:

oc -n portworx get pod -l name=portworx-operator

The Portworx operator should be ready and in a running state before continuing with the upgrade process.

FIGURE 31  Portworx operator status

Once the operator has been upgraded, proceed to upgrade the Portworx Storage Cluster.

Portworx Storage Cluster Upgrade

Once you’ve upgraded the Operator, you’re ready to begin upgrading Portworx and all its associated components. Portworx
utilizes a rolling upgrade approach, upgrading one node at a time. It will only proceed to the next node after the previous one
has been successfully upgraded. To upgrade Portworx, edit the StorageCluster resource and update the Portworx image.

oc edit -n portworx storagecluster

Modify the oci-monitor image version to the desired version of Portworx Enterprise.

For example:

image: portworx/oci-monitor:3.1.2

would be changed to

image: portworx/oci-monitor:3.2.0

if you were attempting to upgrade to Portworx 3.2.0.

spec:
...
 csi:
 enabled: true
 installSnapshotController: true
 image: portworx/oci-monitor:3.1.2
 imagePullPolicy: Always
...

REFERENCE ARCHITECTURE

55

Once the storage spec has been modified with the desired version, the Portworx Level 5 Operator will do the work of
upgrading the storage cluster, autopilot, and any other components necessary for the desired version.

Note: If this is an air-gapped installation, the new versions of the Portworx images must be pre-downloaded and placed into the

local image registry.

Logging and Monitoring

Effective logging and monitoring are fundamental to maintaining the health, performance, and security of an OpenShift cluster.
These practices provide insights into the system's operation, enabling administrators to detect, diagnose, and resolve issues
promptly. By continuously collecting and analyzing logs and metrics, organizations can ensure that their applications run
smoothly, optimize resource utilization, and maintain compliance with regulatory requirements. Implementing standard logging
and monitoring processes not only enhances operational efficiency but also fortifies the cluster's resilience against potential
disruptions and security threats.

Portworx

All Portworx components run within the OpenShift cluster as containers and as such, Kubernetes Administrators can view logs
for any of the components by interrogating pods through the oc logs command.

For example:

oc logs -n portworx [portworx-api-pod]

It is also possible to review these logs from the OpenShift Console by navigating to the specific pod and going to the Logs
dashboard.

FIGURE 32  OpenShift console logs

If needed, or as advised by Portworx support personnel, you can increase log levels by updating the StorageCluster
configuration for each component. For example, to enable debug level logging for the Stork component, you can add the spec.
stork.args.verbose: true stanza to the StorageCluster resource.

REFERENCE ARCHITECTURE

56

spec
...
 stork:
 args:
 verbose: true
 webhook-controller: "true"
 enabled: true
...

To enable debug level in the Portwox container, add the PX_LOGLEVEL=debug environment variable to the StorageCluster
specification:

spec
...
 env:
 - name: PX_LOGLEVEL
 value: debug
...

This will generate a tar.gz file that can be sent to Portworx support for investigation on issues. If you have Telemetry enabled
the diags file is automatically sent to Pure1.

purestorage.com 800.379.PURE

©2024 Pure Storage, the Pure Storage P Logo, FlashArray, FlashBlade, Portworx, Pure1, and the marks in the Pure Storage Trademark List are
trademarks or registered trademarks of Pure Storage Inc. in the U.S. and/or other countries. The Trademark List can be found at purestorage.
com/trademarks. Other names may be trademarks of their respective owners.

REFERENCE ARCHITECTURE

PS2663-01-en 09/24

Summary
This reference architecture provides a comprehensive guide for deploying and managing bare metal OpenShift clusters
with Portworx Enterprise, ensuring a robust, scalable, and high-performing infrastructure. The architecture emphasizes
key considerations such as high availability, data locality, and efficient resource utilization. It outlines best practices for
installation, configuration, and operational management, including crucial aspects like backup and recovery, monitoring,
and logging. By following this reference architecture, organizations can confidently deploy Red Hat OpenShift and Portworx
Enterprise on bare metal, achieving optimal performance, resilience, and reliability for their production workloads.

Legal Notice and Attributions
This document or program is provided “as is” and all express or implied conditions, representations, and warranties, including
any implied warranty of merchantability, fitness for a particular purpose, or non-infringement, are disclaimed, except to the
extent that such disclaimers are held to be legally invalid. The information provided is for informational purposes only and is
not a commitment, promise, or legal obligation to deliver any material, code, or functionality and should not be relied upon
in making purchasing decisions or incorporated into any contract. For future product roadmap purposes, the development,
release, and timing of any features or functionality described for Pure Storage products remains at Pure Storage’s sole
discretion. The information provided is for informational purposes only and is not a commitment, promise, or legal obligation to
deliver any material, code, or functionality and should not be relied upon in making purchasing decisions or incorporated into
any contract. All results and values disclosed herein may be exemplary and may change depending on your specific network
environment. OPEX treatment is subject to customer auditor review. The Pure Storage products and programs described are
distributed under a license agreement restricting the use, copying, distribution, and decompilation/reverse engineering of
this video and any Pure Storage products. No part of the program may be reproduced in any form by any means without prior
written authorization from Pure Storage and its licensors if any. Pure Storage may make improvements and/or changes in the
Pure Storage products and/or the programs described herein at any time without notice. Pure Storage, the Pure Storage P
Logo, Portworx and the marks in the Pure Storage Trademark List are trademarks or registered trademarks of Pure Storage
Inc. in the U.S. and/or other countries. The Trademark List can be found at purestorage.com/trademarks. Linux is the
registered trademark of Linus Torvalds in the U.S. and other countries. Kubernetes is a registered trademark of The Linux
Foundation in the U.S. and/or other countries. Red Hat, Inc. Red Hat, and the Red Hat logo are trademarks or registered
trademarks of Red Hat, Inc. or its subsidiaries in the U.S. and other countries. Other names may be trademarks of their
respective owners.

https://www.purestorage.com
tel://18003797873
https://www.linkedin.com/company/pure-storage
https://www.youtube.com/user/purestorage
https://www.facebook.com/PureStorage
mailto:info%40purestorage.com?subject=
https://www.purestorage.com/content/dam/pdf/en/legal/external-trademark-list.pdf
https://www.purestorage.com/content/dam/pdf/en/legal/external-trademark-list.pdf
https://twitter.com/purestorage

	Executive Summary
	About This Document
	Value Proposition
	Benefits of Red Hat OpenShift
	Benefits of Portworx
	Benefits of Portworx on Red Hat OpenShift Bare Metal
	Target Use Cases

	Planning and Architecture Overview
	Reference Architecture High Level Design
	Considerations for Red Hat OpenShift on Bare Metal
	Considerations for Portworx on Red Hat OpenShift

	Design Considerations
	Red Hat OpenShift Considerations
	Networking Considerations
	Storage Considerations
	High Availability Considerations
	Performance Considerations
	Security Considerations
	Monitoring Considerations
	Air-gapped Cluster Considerations

	Operational Considerations
	Installation Methods and Procedures
	Workload and Volume Considerations
	Scaling
	Backup and Disaster Recovery
	Upgrading
	Logging and Monitoring

	Summary
	Legal Notice and Attributions

