
KEY TECHNOLOGIES DISCUSSED

Data Center – On-premises, AWS

Container Runtime – Docker

Scheduler – Mesosphere DC/OS, Marathon

Stateful Services – Cassandra, Consul, DiskCache,

EHCache

New Context is a lean security consulting
firm that helps enterprises implement
containers and microservices.

We sat down with Danny Purcell, Senior
DevOps Engineer at New Context, to
learn about the challenges enteprises
face when implementing databases in
containers. This is a transcript of that
conversation.

Case Study: New Context Securely Moves
Enterprises Over to Containers and
Microservices with Portworx

CHALLENGES

•	 Large clients require the agility of container-
platforms but they cannot refactor their
applications from the ground-up

•	 Container management platforms like
DC/OS provide automation for applications
but have limited support for stateful services
like databases

•	 Solutions to connect enterprise storage to the
container are fragile and don’t scale

SOLUTION

•	 Mesosphere DC/OS container management
platform for scalable, enterprise applications

•	 Portworx Enterprise for cloud native storage
and data management

RESULT

•	 Portworx provides enterprise-class storage
and data management enterprises require for
container workloads, without requiring them
to refactor their applications

•	 Portworx integrates with Mesosphere
DC/OS to provide persistent storage for data
services, enabling automation required to
keep applications available

•	 Portworx provides a reliable and scalable
storage and data management layer for
enterprise applications which keeps New
Context clients happy

2Portworx is the best Cloud Native Storage for Containers

Can you tell our readers a little bit about
what New Context does?
New Context is a lean security consulting firm. We

help customers with software development, and

architecture and infrastructure management, often as

a part of their move to the cloud. What makes us unique

is that we do this from a security perspective. We really

have a security-first mindset. So while we’re working

with a customer on, say, moving to microservices

running on DC/OS, we’ll see things that could be done

better from a security standpoint, and try to bring

those up to first-class concerns with our clients.

We are also heavily automation focused. For instance,

we see clients where testing is done, but it is done

manually and it would be spotty. As we work with

them, we’ll help them build automated testing in their

CI/CD pipeline. What is really cool is that once you help

get that kind of organization habit going, it becomes a

natural part of their workflow, and it just keeps going.

So we look to create that kind of organizational change

in the companies that we work with.

Can you tell us a little bit about your role
at New Context?
I’ve been at New Context for a year now and primarily

work with tools like Terraform and Chef setting up

container platforms such as DC/OS. As a Senior

DevOps engineer, I am part of the on the ground

engagement with the client, really working through all

the technical details that come up. That engagement

could either be a project given to us where we form a

team around achieving some set goal for the client, for

instance getting a CI/CD pipeline going for the whole

development environment. Or we’ll do what we call

staff augmentation which is where we will have our

people integrated with the client’s team.

Can you tell us a little about a recent
container project you worked on with a
client?
Sure. A lot of customers we work with want to move

to the cloud. But as part of that, they want to become

more efficient in their software development processes

so they can be more competitive. Almost invariably

this leads to a platform as a service implementation,

something like DC/OS or Kubernetes, where in the end,

the customer gets a platform that their developers can

use to more easily build, ship and run applications.

That is great for stateless, ephemeral services, you

know those micro-service architectures where none of

the containers actually need persistent data, but one

of the first things that we run into is that there will be

at least a few services that do need to keep persistent

data.

The problem that we’ve seen
implementing these container-
based platforms is that most
large organizations typically
don’t want to rewrite their
whole stack to be micro-service
oriented right off the bat.”

The problem that we’ve seen implementing these

container-based platforms is that most large

organizations typically don’t want to rewrite their

whole stack to be micro-service oriented right off the

bat. So we end up with a number of applications that

need to be moved to Docker containers but they have

particular performance requirements like disk IO or

they need persistent access to temp files or use some

kind of disk caching mechanism, etc.

3Portworx is the best Cloud Native Storage for Containers

Also typical is that they have a database as part of

the stack which clients want to run on the container

platform as well.

When you have a scenario like that, it gets sticky very

quickly on most container platforms because the

easy, happy path is just for ephemeral things. With

containers, you can do fun things like move containers

when things fail. The platform will have a point of view

built in that says, “Hey, we’re just going to shut things

down as needed and move things around and your

apps will have to deal with that.”

This is probably the chief way that containers differ from

the VM environments that people have been working

with for a long time now. With VMs, they are typically

big enough and expensive enough to set up that you

don’t tend to want to move all the stuff around a lot. As

a result, you can bet on your data services being there

for a good long time. You tend to do more careful in-

place upgrades, on-the-box changes, backup/restore

and things like that in an effort to keep things going

where they currently live. In container-land, it’s easier

to move towards immutable infrastructure and things

tend to move around and get restarted a lot more. So

this is where Portworx can really come in and save the

day because we have a storage fabric that integrates

with container workflows, but still provides persistence

as we’d expect in a VM environment.

You can still back things up. You can still have a server

die and not lose your data. What is nice is all that is at the

container level. And we can integrate with a number of

sources of storage like NFS and EBS volumes in AWS.

This makes it easier to do hybrid cloud deployments,

something that otherwise would be really difficult

because no container platform really supports the

stateful case well.

Getting into specifics, DC/OS is probably the furthest

along when it comes to support for stateful services

but there are still some issues that we needed to

overcome.

First, the integration with REX-Ray, while a valiant

effort, doesn’t cover the use cases that our clients

have. There are several problems. One is that with

this tool, all volume sizes are fixed at the creation of

the DC/OS cluster so we can not set per-app volume

sizes using Docker containers. Portworx does not have

this limitation. Portworx also supports in-line volume

specification which allows our DC/OS platform users

to launch containers that use storage without having

to log a ticket and wait for someone to manually create

a volume for their app. This is a big help for agility

because the app teams don’t have to wait on manual

processes to test their deployments.

So this is where Portworx can
really come in and save the day
because we have a storage fabric
that integrates with container
workflows, but still provides
persistence as we’d expect in a
VM environment.”

First, the integration with REX-
Ray, while a valiant effort,
doesn’t cover the use cases that
our clients have.”

4Portworx is the best Cloud Native Storage for Containers

Also, when using a REX-Ray volume, Marathon apps

are limited to one task at most. This constraint makes

it very difficult to realize the benefits of a container

platform for stateful apps. One of the biggest benefits

of a container platform is the ability to easily add more

instances to a running application so we can smoothly

keep up with incoming user requests. This is known as

app scaling and is part of the Marathon UI. An operator

can easily increase the desired number of instances

from 1 to 2, for example.

If the app were using a REX-Ray volume though, that

request would be blocked by the platform since the use

of a REX-Ray volume limits the number of tasks an app

can have to 1. We can “scale down” to 0 to effectively

pause the app and then scale back up to 1 but we can

not go past that when using REX-Ray.

There are a lot of use cases where more than one

instance of a stateful app is desirable. One use case

would be running Consul on Marathon. Things like

DiskCache and EHCache would also scale volumes

with compute if run on Marathon. Then there are the

occasional applications and services that, for one

reason or another, make use of local storage. When

an organization makes the move to containerize, the

attending challenges can be exacerbated by the need

to redesign various apps and services to avoid using

local storage.

REX-Ray volumes are also restricted to being mounted

in only one task at a time so they cannot be shared

across tasks. On the other hand, Portworx volumes

support a “shared” flag which, if set, allows multiple

tasks to mount the same volume. So far as I’ve seen,

Portworx is really the only one that’s tried to tackle that

problem.

Another closely related use case is trading off mounting

a single volume between multiple containers. While

REX-Ray technically supports this case, it’s quite slow

with EBS volumes and we have seen the EBS volumes

get stuck dismounting while trying this.

Our first attempt to solve these problems in practice

was when we tried to run GitLab on Nomad. Every

six months we have an internal event called “Hack

Week,” where everyone is allowed the liberty to do

whatever project they want… within reason. Some

people make games, some people make tools for

games, some people who are infrastructure nerds like

me make infrastructure stuff. So during that week we

had a team that was looking at our massive source

control management problem, where we have multiple

systems and multiple tools to run.

With Portworx, there is no
requirement to dismount an EBS
volume when replacing a task so
tasks are not only free to move
around but those movements
can be done faster since we don’t
have to wait on the EBS volumes
to move.”

The last problem we have had with REX-Ray

is that failover works but only as long as the

underlying volume dismounts properly so it can

be re-mounted to another host when Marathon

starts a new task for the failed app. This operation

can be flaky though, sometimes it can get stuck.

4940 El Camino Real, Ste 200, Los Altos, CA 94022

Tel: 650-241-3222 | info@portworx.com | portworx.com

LEARN MORE

Portworx is the cloud native storage company

that enterprises depend on to reduce the cost

and complexity of rapidly deploying containerized

applications across multiple clouds and on-prem

environments.

With Portworx, you can manage any database or

stateful service on any infrastructure using any

container scheduler. You get a single data management

layer for all of your stateful services, no matter where

they run. Portworx thrives in multi-cloud environments.

Contact us to find out how Portworx’s unique storage

solution can deliver the availability, performance, and

features necessary to minimize stateful application

operations costs and improve revenue growth -

https://portworx.com/request-a-demo

portworx.com
www.newcontext.com

@portwx

linkedin.com/company/portworx

With Portworx, there is no requirement to dismount

an EBS volume when replacing a task so tasks are not

only free to move around but those movements can

be done faster since we don’t have to wait on the EBS

volumes to move.

What advice would you give to
someone else who was thinking about
implementing stateful containers?
Start small. Don’t try to do it all at once. I really like the

advice of John Fiedler, the senior director of engineering

at SalesforceIQ. He did a talk at a Dockercon 2015 on

how to successfully run Docker in production. Much of

the advice in that video is still relevant now, in particular

to running stateful services. The general thrust of the

talk is “don’t try to do everything at once.” Make it a

migration path. There’s very often in the software

industry this desire to do a clean cut each time and

start green field on things, but it is much simpler to

take this migration in pieces.

As far as which stateful service to start with, the

characteristics you’re looking for is a stateful service

with the least complex deployment model that you can

get. For example, if you do something like a ring server,

like Cassandra, or anything that mirrors a gossip

protocol, or a ring style deployment, those tend to be a

bit simpler, at least in the deployment style. Simple is a

relative term when you’re talking about databases and

clusters of databases of course so it really depends on

your application but the biggest thing is just to start

small and learn as you go.

