
C
a

rp
enter

 &
 M

cFa
d

in

Jeff Carpenter
 & Patrick McFadin

Foreword by Sam Ramji

Managing
Cloud Native Data
on Kubernetes
Architecting Cloud Native Data Services Using
Open Source Technology

Compliments of

DATA

“This book challenged
my notions about
storing data on
Kubernetes. I no longer
fear the loss of data.”

—Jesse Anderson
Managing Director, Big Data Institute

Managing Cloud Native Data on Kubernetes

US $69.99	 CAN $87.99
ISBN: 978-1-098-11139-7

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Is Kubernetes ready for stateful workloads? This open source
system has become the primary platform for deploying and
managing cloud native applications. But because it was
originally designed for stateless workloads, working with data
on Kubernetes has been challenging. If you want to avoid
the inefficiencies and duplicative costs of having separate
infrastructure for applications and data, this practical guide
can help.

Using Kubernetes as your platform, you’ll learn open source
technologies that are designed and built for the cloud.
Authors Jeff Carpenter and Patrick McFadin provide case
studies to help you explore new use cases and avoid the
pitfalls others have faced. You’ll get an insider’s view of what’s
coming from innovators who are creating next-generation
architectures and infrastructure.

With this book, you will:

•	 Learn how to use basic Kubernetes resources to compose
data infrastructure

•	 Automate the deployment and operations of data
infrastructure on Kubernetes using tools like Helm
and operators

•	 Evaluate and select data infrastructure technologies
for use in your applications

•	 Integrate data infrastructure technologies into your
overall stack

•	 Explore emerging technologies that will enhance your
Kubernetes-based applications in the future

Jeff Carpenter has worked as a
software engineer and architect in
multiple industries and as a developer
advocate helping engineers succeed
with Apache Cassandra. He’s involved
in multiple open source projects
in the Cassandra and Kubernetes
ecosystems including Stargate
and K8ssandra. Jeff is coauthor of
Cassandra: The Definitive Guide.

Patrick McFadin has been a
distributed systems hacker since
working on the Naval Tactical Data
System in the US Navy. After earning
a computer engineering degree
from Cal Poly SLO, he focused on
high-scale internet infrastructure.
Patrick is also a steady contributor
to the Apache Cassandra project. C

a
rp

enter
 &

 M
cFa

d
in

ISBN: 978-1-492-0-9660-3

Uncomplicate
Data on Kubernetes
Make your data services scalable, available and
secure on Kubernetes

Get Started Today

https://portworx.com/?utm_medium=banner&utm_source=oreilly&utm_campaign=pwx-brand&utm_content=oreilly-ebook

Praise for Managing Cloud Native Data on Kubernetes

This book challenged my notions about storing data on
Kubernetes. I no longer fear the loss of data.

—Jesse Anderson, Managing Director, Big Data Institute

Managing Cloud Native Data on Kubernetes is a groundbreaking work not only because
it is the first to tackle this problem space, but because it simultaneously obviates the

need for any other book on the subject. Drawing on their decades of experience,
Jeff and Patrick give readers the confidence to run stateful workloads on Kubernetes

in production. This book will be the reference on the topic for years to come.
—Umair Mufti, Director of Product Management,

Portworx by Pure Storage

Kubernetes is notoriously complex, and dealing with persistent data adds to the
complexity. This book does an amazing job of taming the complexity of dealing with

data using Kubernetes with many useful code examples and architectural diagrams.
—Noah Gift, Duke Executive in Residence

Storage is one of the hardest infrastructure layers to master and arguably
has the longest innovation cycles. We are at the cusp of one such innovation

cycle at the moment with cloud native applications. Jeff and Patrick
have tackled this subject head-on, by having the readers understand the

evolution of cloud native storage and help transform theirstorage strategy
to meet the next gen application demands. Anyone that is working with

microservices (which is almost everyone at the moment), must read
this book before they have completed their transformation projects.

—Kiran Mova, Founder, Architect Storage Startups
Open Source Advocate/Manager, VMware

I have learned a lot from reading this book! I have been working full time
in the Kubernetes ecosystem for several years at Red Hat but this book touches
areas that I haven’t had experience with. It was an eye-opener for me to realize

that Kubernetes is not only for stateless microservices. I can clearly see where the
platform is going and this book definitely helped me see that direction. Industry

experts Jeff Carpenter and Patrick McFadin put some very nice articles from other
experts in the book and I loved reading how tech evolved into its current state.

—Ali Ok, Principal Software Engineer, Red Hat

This is the book you need if doing persistence on Kubernetes is your ultimate
goal. Jeff and Patrick do a tremendous job in this comprehensive view

of Data on Kubernetes to the point where it doesn’t have to be
scary, especially if you have this book on your shelf!

—Rick Vasquez, Senior Director,
Strategic Initiatives, Western Digital

Jeff Carpenter and Patrick McFadin

Managing Cloud Native
Data on Kubernetes

Architecting Cloud Native Data Services
Using Open Source Technology

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-492-09660-3

[LSI]

Managing Cloud Native Data on Kubernetes
by Jeff Carpenter and Patrick McFadin

Copyright 2023 Jeffrey Carpenter and Patrick McFadin. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black
Development Editor: Jill Leonard
Production Editor: Beth Kelly
Copyeditor: Justin Billing
Proofreader: Sharon Wilkey

Indexer: Potomac Indexing, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

December 2022: First Edition

Revision History for the First Edition
2022-12-01: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098111397 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Managing Cloud Native Data on
Kubernetes, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Portworx by Pure Storage. See our statement of
editorial independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098111397
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword. xiii

Preface. xvii

1. Introduction to Cloud Native Data Infrastructure: Persistence,
Streaming, and Batch Analytics. 1
Infrastructure Types 2
What Is Cloud Native Data? 4
More Infrastructure, More Problems 6
Kubernetes Leading the Way 7

Managing Compute on Kubernetes 8
Managing Network on Kubernetes 9
Managing Storage on Kubernetes 9

Cloud Native Data Components 10
Looking Forward 11
Getting Ready for the Revolution 12

Adopt an SRE Mindset 12
Embrace Distributed Computing 14
Principles of Cloud Native Data Infrastructure 14

Summary 17

2. Managing Data Storage on Kubernetes. 19
Docker, Containers, and State 19

Managing State in Docker 21
Bind Mounts 21
Volumes 22
Tmpfs Mounts 23

vii

Volume Drivers 24
Kubernetes Resources for Data Storage 26

Pods and Volumes 26
PersistentVolumes 33
PersistentVolumeClaims 37
StorageClasses 39

Kubernetes Storage Architecture 42
Flexvolume 42
Container Storage Interface 43
Container Attached Storage 45
Container Object Storage Interface 47

Summary 49

3. Databases on Kubernetes the Hard Way. 51
The Hard Way 52
Prerequisites for Running Data Infrastructure on Kubernetes 53
Running MySQL on Kubernetes 53

ReplicaSets 54
Deployments 56
Services 60
Accessing MySQL 63

Running Apache Cassandra on Kubernetes 65
StatefulSets 67
Accessing Cassandra 78

Summary 80

4. Automating Database Deployment on Kubernetes with Helm. 81
Deploying Applications with Helm Charts 82
Using Helm to Deploy MySQL 83

How Helm Works 87
Labels 89
ServiceAccounts 90
Secrets 90
ConfigMaps 91
Updating Helm Charts 93
Uninstalling Helm Charts 94

Using Helm to Deploy Apache Cassandra 94
Affinity and Anti-Affinity 96

Helm, CI/CD, and Operations 99
Summary 102

viii | Table of Contents

5. Automating Database Management on Kubernetes with Operators. 103
Extending the Kubernetes Control Plane 104

Extending Kubernetes Clients 105
Extending Kubernetes Control Plane Components 105
Extending Kubernetes Worker Node Components 106

The Operator Pattern 107
Controllers 107
Custom Resources 110
Operators 112

Managing MySQL in Kubernetes Using the Vitess Operator 114
Vitess Overview 114
PlanetScale Vitess Operator 117

A Growing Ecosystem of Operators 127
Choosing Operators 127
Building Operators 130

Summary 133

6. Integrating Data Infrastructure in a Kubernetes Stack. 135
K8ssandra: Production-Ready Cassandra on Kubernetes 135

K8ssandra Architecture 136
Installing the K8ssandra Operator 137
Creating a K8ssandraCluster 141

Managing Cassandra in Kubernetes with Cass Operator 143
Enabling Developer Productivity with Stargate APIs 147
Unified Monitoring Infrastructure with Prometheus and Grafana 150
Performing Repairs with Cassandra Reaper 154
Backing Up and Restoring Data with Cassandra Medusa 156

Creating a Backup 157
Restoring from Backup 158

Deploying Multicluster Applications in Kubernetes 159
Summary 165

7. The Kubernetes Native Database. 167
Why a Kubernetes Native Approach Is Needed 167
Hybrid Data Access at Scale with TiDB 169

TiDB Architecture 170
Deploying TiDB in Kubernetes 173

Serverless Cassandra with DataStax Astra DB 182
What to Look for in a Kubernetes Native Database 189

Basic Requirements 189
The Future of Kubernetes Native 191

Summary 194

Table of Contents | ix

8. Streaming Data on Kubernetes. 195
Introduction to Streaming 195

Types of Delivery 196
Delivery Guarantees 197
Feature Scope 198

The Role of Streaming in Kubernetes 199
Streaming on Kubernetes with Apache Pulsar 202

Preparing Your Environment 205
Securing Communications by Default with cert-manager 207
Using Helm to Deploy Apache Pulsar 211

Stream Analytics with Apache Flink 212
Deploying Apache Flink on Kubernetes 214

Summary 217

9. Data Analytics on Kubernetes. 219
Introduction to Analytics 220
Deploying Analytic Workloads in Kubernetes 221
Introduction to Apache Spark 224
Deploying Apache Spark in Kubernetes 226

Build Your Custom Container 228
Submit and Run Your Application 228

Kubernetes Operator for Apache Spark 230
Alternative Schedulers for Kubernetes 233

Apache YuniKorn 235
Volcano 237

Analytic Engines for Kubernetes 240
Dask 242
Ray 244

Summary 246

10. Machine Learning and Other Emerging Use Cases. 247
The Cloud Native AI/ML Stack 248

AI/ML Definitions 248
Defining an AI/ML Stack 250
Real-Time Model Serving with KServe 252
Full Lifecycle Feature Management with Feast 255
Vector Similarity Search with Milvus 258

Efficient Data Movement with Apache Arrow 261
Versioned Object Storage with lakeFS 264
Summary 268

x | Table of Contents

11. Migrating Data Workloads to Kubernetes. 269
The Vision: Application-Aware Platforms 269
Charting Your Path to Success 271

People 272
Technology 276
Process 283

The Future of Cloud Native Data 288
Summary 292

Index. 293

Table of Contents | xi

Foreword

You’re about to go on an amazing adventure into the heart of the biggest change in
the technology industry. In this adventure, you’re part of a fellowship led by a brave
duo who have dared the mountains, depths, and lakes of data for decades. You’ll
journey with Patrick McFadin and Jeff Carpenter, along with a band of visionary
practitioners, to attain the prize: the power to create the future of data.

After reading this book, you’ll be able to create your own new adventures and
bring others along with you to go beyond the old world of computation, ruled by
infrastructure, into the new world of cognition, ruled by autonomous experiences. It’s
going to be awesome.

The book you hold is written in a time when we’ve already seen a significant change
in how we imagine, understand, and operate large-scale systems. The act of writing a
book about technology in the midst of all this change may itself seem quixotic, but it’s
essential. It’s a moment to stop at the Last Homely House as we gather the cognitive
tools, supplies, and artifacts that will help us in the journey ahead.

We need all the help we can gather because change tends to accelerate.

In a few short decades, we’ve gone from mainframes to networks to data centers to
clouds. Each new era feels like a new world with new rules and new opportunities.
We build ecosystems of tools to match the era; the tools enable faster progress, and
we build even more of them; we grow unsatisfied despite the speed, and suddenly
there is a new breakthrough that heralds another new era.

Each era needs to deal with the same concerns: networking, computation, and
data. At each leap forward, they all need to transform. Mainframes and terminals,
networks and routers, data centers and virtualization, clouds and containers; by
architecting for new levels of abundance, each sets a new bar for velocity, scale, and
unit economics. We strive to go faster, bigger, and more efficient.

As the tools change, so do the people; mindsets must be rebuilt for each new wave
of abundance, from the mainframe high priests to overworked network admins to

xiii

dutiful datacenter operators to savvy cloud engineers. Infrastructure has always been
considered expensive since it’s a cost of doing business rather than the business itself;
each era’s technology teams have needed to focus on what the business values.

Mainframes and transaction processing, networks and file sharing, data centers and
ecommerce, clouds and apps—each era’s north star reflects the standard business
focus of the time. As we look into the near future, we see new nouns: edges, models,
predictions, and decisions, collectively powering autonomous businesses.

What’s holding us back from the next era? What’s the big unlock we’re collectively
struggling to achieve? It’s the one thing that we haven’t solved beautifully—yet.

The first half of the cloud era was defined by Amazon’s AWS and copied by others:
singular global-scale federated datacenters using virtual machines and infrastructure
microservices, designed and evolved together as one unique whole. No two of these
clouds are alike. They vary by aesthetic, by identity models, by billing systems, by
APIs. Just like in the beginnings of the mainframe, network, and datacenter eras, each
cloud stack was vertically integrated. This lock-in offered great utility at the price of
never leaving.

The second half of the cloud era is defined by Kubernetes and its vibrant ecosystem
of tools, all built on the same premise: the unit of work is a container, not a virtual
machine, physical server, or mainframe processor. Containers are the law of the
land, representing the standard granularity of technology workloads until the next
era comes along. It’s about transcending single clouds to gain a cloud native stance
anywhere. The Kubernetes breakthrough is named cloud native to mark the mature
state of the cloud era.

What is the magic power we find in containers? It is simply this: we’ve learned that
scaling out our ideas requires scaling down our units of work. Software is made of
ideas; fluidity requires scaling down to fit these ideas into more efficient units, and
leverage requires scaling out to take advantage of any available infrastructure.

The cloud native manifesto that is so well-represented by Kubernetes and its ecosys‐
tem has taken us a long way toward the future, but we now find ourselves pinned
in place, short of the summit we aspire to. For all the advances we’ve made, they are
focused on stateless operations. We now face the final stage of the era: cloud native
data.

When we conquer this challenge collectively, we’ll have created a world where any
app or model can run anywhere it’s needed, at the speed that users demand, because
the data will flow with it. Whether it’s on a phone, a car, a metro edge, a cloud, or
a satellite, the data will be self-describing, observable, fluid, and accessible. Infrastruc‐
ture can become invisible and deliver power however developers may dream.

This book is key to unlocking that potential.

xiv | Foreword

Like any epic journey, cloud native data on Kubernetes is a progressive revelation.
The ordinary world of storage and StatefulSets leads you to mastery of architect‐
ing data infrastructure for any given workload, from applications to analytics and
machine learning. The door to the extraordinary world will then be open to you:
a vision of the next generation of data management and the open source projects
that are advancing the art of the possible. Open communities sharing ideas and code
together are the only way we can realize this future.

Looking ahead to the next decade, we don’t know exactly what the technologies we
use will be named, but we do know that they will be built on the ideas we’re making
real now. Welcome to the adventure of cloud native data, and take joy in the journey!

— Sam Ramji
Chief Strategy Officer at DataStax

Strategic Advisor to the Linux Foundation

Foreword | xv

Preface

Is Kubernetes ready for stateful workloads?

This might be the question that got you to open this book. Since cloud computing
first emerged, data infrastructure (NoSQL/NewSQL, streaming, analytics) and appli‐
cation infrastructure (Docker, Kubernetes) have been maturing rapidly but on sepa‐
rate tracks. In our view, it’s time to formalize bringing these two areas together. This
isn’t an aspiration for the future; it is already happening with collaboration across
multiple communities. Organizations that are trying to manage two distinct stacks
for applications and data will soon find themselves at a competitive disadvantage.

For the first few years of Kubernetes’ existence after its public launch in 2014, the
maxim that it was not ready for data and stateful workloads was rarely questioned.
An example of the prevailing wisdom can be found in this Kelsey Hightower tweet
from 2018:

Kubernetes has made huge improvements in the ability to run stateful workloads
including databases and message queues, but I still prefer not to run them on
Kubernetes.

Over the past few years, the tide has turned. Problem-solving engineers took this
challenge from Kelsey and turned it into action. In some sense, the maturation of
Kubernetes for stateful workloads was inevitable, as the demand was so great. Those
of us who can remember arguments about why a database had to run on a bare-metal
machine or why you should never deploy data infrastructure in containers can relate
to this concern.

We’ve also learned that there is a huge difference between “never” and “not yet.”
Compute, storage, networking are now considered commodities; why not data man‐
agement? The value proposition of Kubernetes for reducing cost and simplifying
application development means that the migration of data infrastructure onto Kuber‐
netes was inevitable. The changes are not just in Kubernetes. As you will see, projects
in data infrastructure have been changing as well.

xvii

https://oreil.ly/d4jRU

Why We Wrote This Book
We were caught up in the trend of moving stateful workloads to Kubernetes when
our “day job” responsibilities at DataStax challenged us to consider how to deploy
and operate Apache Cassandra in Kubernetes effectively. In the spirit of open source
development, we sought out other practitioners who were attempting similar feats
(and succeeding) with databases and other stateful workloads. We found a group
of like-minded individuals and helped launch the Data on Kubernetes Community
(DoKC) in 2020. DoKC is now an independent organization and has hosted well over
100 meetups and several in-person events. The variety of topics and presenters in
the DoKC meetup is evidence of a vibrant community, working collaboratively to
establish standards and best practices. Most importantly, we are learning together,
applying lessons from the past and supporting each other as we build something new.

As we participated in these meetups, a set of common themes began to emerge.
We heard, again and again, the virtues of the PersistentVolume subsystem, the pros
and cons of StatefulSets, the promise of the operator pattern for making database
operations more manageable, and the early hints of ideas for new types of data
management. Over time, we developed a strong conviction that this fledgling com‐
munity of practitioners needed a place for all of the wisdom scattered across multiple
presentations and blog posts to be gathered and distilled into a digestible form. This
book is the result of that process.

Much work remains to be done in the area of cloud native data, and many areas need
further exploration, including operators, machine learning, data APIs, declarative
management of data sets, and many more. Our hope is that this book opens the gates
for a flood of additional books, blogs, presentations, and learning resources.

Who Is This Book For?
The primary audience for this book comprises the developers and architects who are
designing, building, and running applications in the cloud. If that describes you and
you’re picking up this book, chances are you’ve heard the thundering herd of organi‐
zations adopting Kubernetes and have joined that trend or are at least considering
it. However, you may have also heard the reservations about stateful workloads on
Kubernetes and are looking for help in how to proceed. You’ve come to the right
place! By reading this book you will gain the following:

• An understanding of basic Kubernetes resources and how they are used to•
compose data infrastructure

• An appreciation for how tools like Helm and operators can automate the deploy‐•
ment and operations of data infrastructure on Kubernetes

xviii | Preface

https://oreil.ly/WGlmp
https://oreil.ly/b1imM

• The ability to evaluate and select data infrastructure technologies for use in your•
applications

• The knowledge of how to integrate these data infrastructure technologies into•
your overall stack

• A view toward emerging technologies that will enhance your Kubernetes-based•
applications in the years to come

A smaller but no less important audience includes core Kubernetes developers and
data infrastructure developers, many of whom we’ve met through the DoKC. We
hope to create a common set of principles and best practices that we can use as
a framework to drive improvements into the Kubernetes core as well as the data
infrastructure built to run in Kubernetes. Together we can push the practice of data
on Kubernetes forward.

For everyone, know that our objective in this book is to shoot straight. Where the
technology is mature and solid, we’ll let you know, but there are also many areas
where the technology is still emerging. We’ll make sure to highlight those areas where
improvement is needed.

How to Read This Book
This book is designed to be read from start to finish, especially by readers who
are less experienced with Kubernetes. The first few chapters introduce Kubernetes
terminology and concepts that are referenced throughout the remainder of the book
as we discuss more advanced topics. Here’s how this book is organized:

Chapter 1, “Introduction to Cloud Native Data Infrastructure: Persistence,
Streaming, and Batch Analytics”

This chapter lays out the goal of modernizing your cloud native applications by
putting not only stateless but also stateful workloads on Kubernetes. Of course
we would say this, but you really should start here, as we define key goals
and terms to give all readers a level playing field. Specifically, we propose a
definition for the term cloud native data and define principles for cloud native
data infrastructure that we’ll use to measure technologies throughout the rest of
the book.

Chapter 2, “Managing Data Storage on Kubernetes”
In this chapter, we’ll look at one of the foundational areas for data infrastructure
on Kubernetes: storage. We’ll begin with how storage works in containerized sys‐
tems starting with Docker, then moving to Kubernetes and its PersistentVolume
subsystem. We’ll discuss the various types of storage available including file,
block, and object storage, and the trade-offs of using local versus remote storage
solutions.

Preface | xix

Chapter 3, “Databases on Kubernetes the Hard Way”
This chapter introduces Kubernetes compute resources such as Pods, Deploy‐
ments, and StatefulSets and walks you through the step-by-step process of
deploying databases like MySQL and Apache Cassandra using these resources.
You’ll learn some of the strengths and weaknesses of StatefulSets for managing
distributed databases.

Chapter 4, “Automating Database Deployment on Kubernetes with Helm”
Continuing the themes of the previous chapter, we revisit the deployment of
MySQL and Cassandra on Kubernetes, this time in a more automated fashion
using the Helm package manager. You’ll also learn about Kubernetes resources
that help with configuration including ConfigMaps and Secrets. We discuss the
role of Helm in your overall DevOps process and CI/CD toolset and some of its
shortcomings with respect to managing database operations.

Chapter 5, “Automating Database Management on Kubernetes with Operators”
This chapter concludes our sequence on database deployment by introducing the
operator pattern and demonstrating how operators can help manage “day two”
database operations. We’ll examine how operators extend the Kubernetes control
plane to manage databases, using Vitess (MySQL) and Cass Operator (Apache
Cassandra) as examples. Along the way, you’ll learn how to assess operators’
maturity and even how to build your own operators by using frameworks such as
the Operator SDK.

Chapter 6, “Integrating Data Infrastructure in a Kubernetes Stack”
In this chapter, we begin to expand the focus beyond just deploying and operat‐
ing databases to consider how databases and other data infrastructure can be
incorporated in your overall application stack. We’ll look at a project called
K8ssandra that integrates Apache Cassandra along with tools for managing mon‐
itoring, security, and database backups, and an API layer for easier data access.

Chapter 7, “The Kubernetes Native Database”
At this point, we take a step back and summarize what you’ve learned about
cloud native data management in the book’s first half and use that knowledge
to consider the question, “What is a Kubernetes native database?” More than
just a debate about industry buzzwords, this discussion is an important one for
you who are involved in selecting data infrastructure and those developing that
infrastructure.

Chapter 8, “Streaming Data on Kubernetes”
Moving beyond persistence, we’ll start working through the rest of the data infra‐
structure, starting with streaming technologies. Moving and processing data in
cloud native applications is just as prevalent as database persistence, but requires
different strategies in deployment: connecting endpoints securely and building in

xx | Preface

default resilience and elasticity. In this chapter, Apache Pulsar and Apache Flink
will be used to demonstrate those important practices to build.

Chapter 9, “Data Analytics on Kubernetes”
Ironically, the needs for large-scale analytics deployments are part of the origin
story of many of the methodologies we see used in Kubernetes today—namely,
orchestration and resource management. Coming full circle, running analytics in
Kubernetes is now a top priority in many organizations. We highlight changes in
Apache Spark to give you a head start for your use case and look at the leading
edge of analytics in Kubernetes with the Dask and Ray projects.

Chapter 10, “Machine Learning and Other Emerging Use Cases”
The topics of AI and machine learning are already on the cutting edge within
infrastructure. Projects that have started in the past few years could start in
Kubernetes first, and it’s an interesting thing to consider. There are other types of
projects thinking in terms of cloud native first and providing some directionality
to the future of data. This chapter is meant to be a survey of those projects and
offered broadly as ideas and methodologies to consider as you move forward
with cloud native data.

Chapter 11, “Migrating Data Workloads to Kubernetes”
All the knowledge you’ve obtained in reading the book goes to waste if you don’t
put it into practice. In this chapter, we highlight the key teachings of the previous
chapters and propose a framework of people, process, and technology changes
you can make to migrate your stateful workloads to Kubernetes successfully. We
conclude with a vision of what your organization’s data infrastructure could look
like in the near future.

The discipline of managing data on Kubernetes is an emerging one with a lot of
change in particular areas. We acknowledge that this, like any technical book, repre‐
sents a snapshot of available knowledge at a specific point in time—in this case, late
2022. The real danger of writing a book about a fast-moving topic is how quickly
irrelevant the information can become.

To best address this reality, you will see a common formula applied in this book:
we provide plenty of examples but stress the fundamentals. As we progress through
the book, the technology we examine becomes progressively less mature. Rather
than looking for the copy-and-paste answer or the one-size-fits-all architecture, we
encourage you to extract the core tenets you can apply to your unique use cases.

In particular, since Chapters 2–5 address well-established topics, you’ll find more
in-depth explanations and hands-on examples in these chapters. Chapters 8–10 get
into data infrastructure that is still experiencing quite a bit of change, at least in terms
of deployment on Kubernetes. In these cases, we point more frequently to third-party
learning resources so that you can be sure to have the most up-to-date experience. In

Preface | xxi

the spirit of this book’s inception, we encourage you to share new resources you find
with others so we can move forward together.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/data-on-k8s-book/examples.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

xxii | Preface

https://github.com/data-on-k8s-book/examples
mailto:bookquestions@oreilly.com

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O’Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Managing Cloud Native
Data on Kubernetes by Jeff Carpenter and Patrick McFadin (O’Reilly). Copyright 2023
Jeffrey Carpenter and Patrick McFadin, 978-1-098-11139-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

Preface | xxiii

mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/cloud-native-data-Kubernetes.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://youtube.com/oreillymedia.

Acknowledgments
Thanks go first of all to Jess Haberman, who believed in the concept of this book
from our first conversation and fought to make it happen, and to our editor Jill
Leonard for her continual encouragement and wise counsel.

One of the key features of this book is the inclusion of sidebars based on our conver‐
sations with expert technologists and practitioners. We’ve tried to let their words
speak for themselves with as little editing as possible. With that, we offer up our
heartfelt thanks to those who shared their time and insights with us: Rick Vasquez,
Kiran Mova, Maciej Szulik, John Sanda, Deepthi Sigireddi, Umair Mufti, Irfan Ur
Rehman, Dongxu (Ed) Huang, Jake Luciani, Jesse Anderson, Josh van Leeuwen,
Holden Karau, Dean Wampler, Theofilos Papapanagiotou, Willem Pienaar, Xiaofan
Luan, Josh Patterson, Adi Polak, and Craig McLuckie.

These experts have not only contributed their words, but also influenced the direc‐
tion of our research and the choice of technologies we discuss here. Deepthi, Jesse,
Umair, and Rick also did double duty as technical reviewers of the book. We also
appreciate the insights of our other technical reviewers: Wei Deng, Ali Ok, Aaron
Morton, and Noah Gift.

The Data on Kubernetes Community (DoKC) has been a huge inspiration for this
effort, and we’re especially grateful to Bart Farrell, Demitrios Brinkmann, and Melissa
Logan for connecting us with many other community members and for their encour‐
agement and support. We’d like to give special acknowledgment to Evan Powell, who
birthed the DoKC by finding Demetrios and funding the initial meetups. That was
the spark that has lit the forge for so many good things to come.

Sam Ramji was a major influence on this book, not only by writing the foreword but
also in challenging our thought processes by reminding us: “You have to do the work
to have an opinion.” Sam was always willing to get on a call, make an introduction, or
share ideas over a beer.

xxiv | Preface

https://oreil.ly/cloud-native-data-Kubernetes
mailto:bookquestions@oreilly.com
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

This book was born during the early days of a global pandemic and nurtured
throughout seasons of uncertainty, challenge, and renewal, both on a global and
personal level. We’re so very grateful for the support of many friends and family who
walked with us through these times and reminded us of the power of questions like
“How’s the book going?” or even just a simple “How are you doing?”

Preface | xxv

CHAPTER 1

Introduction to Cloud Native Data
Infrastructure: Persistence,

Streaming, and Batch Analytics

Do you work at solving data problems and find yourself faced with the need for
modernization? Is your cloud native application limited to the use of microservices
and service mesh? If you deploy applications on Kubernetes (sometimes abbreviated
as “K8s”) without including data, you haven’t fully embraced cloud native. Every
element of your application should embody the cloud native principles of scale,
elasticity, self-healing, and observability, including how you handle data.

Engineers who work with data are primarily concerned with stateful services, and this
will be our focus: increasing your skills to manage data in Kubernetes. By reading this
book, our goal is to enrich your journey to cloud native data. If you are just starting
with cloud native applications, there is no better time to include every aspect of the
stack. This convergence is the future of how we will consume cloud resources.

So, what is this future we are creating together?

For too long, data has lived outside of Kubernetes, creating a lot of extra effort and
complexity. We will get into valid reasons for this, but now is the time to combine
the entire stack to build applications faster, at the needed scale. Based on current
technology, this is very much possible. We’ve moved away from the past of deploying
individual servers and toward the future where we will be able to deploy entire
virtual datacenters. Development cycles that once took months and years can now be
managed in days and weeks. Open source components can now be combined into
a single deployment on Kubernetes that is portable from your laptop to the largest
cloud provider.

1

The open source contribution isn’t a tiny part of this, either. Kubernetes and the
projects we discuss in this book are under the Apache License 2.0 unless otherwise
noted, and for a good reason. If we build infrastructure that can run anywhere,
we need a license model that gives us the freedom of choice. Open source is both
free-as-in-beer and free-as-in-freedom, and both count when building cloud native
applications on Kubernetes. Open source has been the fuel of many revolutions in
infrastructure, and this is no exception.

That’s what we are building: the near future reality of fully realized Kubernetes
applications. The final component is the most important, and that is you. As a reader
of this book, you are one of the people who will create this future. Creating is what we
do as engineers. We continuously reinvent the way we deploy complicated infrastruc‐
ture to respond to increased demand. When the first electronic database system was
put online in 1960 for American Airlines, a small army of engineers made sure that
it stayed online and worked around the clock. Progress took us from mainframes to
minicomputers, to microcomputers, and eventually to the fleet management we do
today. Now, that same progression is continuing into cloud native and Kubernetes.

This chapter will examine the components of cloud native applications, the challenges
of running stateful workloads, and the essential areas covered in this book. To get
started, let’s turn to the building blocks that make up data infrastructure.

Infrastructure Types
In the past 20 years, the approach to infrastructure has slowly forked into two areas
that reflect how we deploy distributed applications (as shown in Figure 1-1):

Stateless services
These are services that maintain information only for the immediate lifecycle
of the active request—for example, a service for sending formatted shopping
cart information to a mobile client. A typical example is an application server
that performs the business logic for the shopping cart. However, the information
about the shopping cart contents resides external to these services. They need to
be online for only a short duration from request to response. The infrastructure
used to provide the service can easily grow and shrink with little impact on the
overall application, scaling compute and network resources on demand when
needed. Since we are not storing critical data in the individual service, that data
can be created and destroyed quickly, with little coordination. Stateless services
are a crucial architecture element in distributed systems.

Stateful services
These services need to maintain information from one request to the next. Disks
and memory store data for use across multiple requests. An example is a database
or filesystem. Scaling stateful services is more complex since the information

2 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

typically requires replication for high availability. This creates the need for con‐
sistency and mechanisms to keep data in sync between replicas. These services
usually have different scaling methods, both vertical and horizontal. As a result,
they require different sets of operational tasks than stateless services.

Figure 1-1. Stateless versus stateful services

In addition to the way information is stored, we’ve also seen a shift toward developing
systems that embrace automated infrastructure deployment. These recent advances
include the following:

• Physical servers have given way to virtual machines (VMs) that are easy to deploy•
and maintain.

• VMs have been simplified and focused on specific applications to containers.•
• Containers have allowed infrastructure engineers to package an application’s•

operating system requirements into a single executable.

The use of containers has undoubtedly increased the consistency of deployments,
which has made it easier to deploy and run infrastructure in bulk. Few systems
emerged to orchestrate the explosion of containers like Kubernetes, which is evident
from its incredible growth. This speaks to how well it solves the problem. The official
documentation describes Kubernetes as follows:

Kubernetes is a portable, extensible, open source platform for managing containerized
workloads and services that facilitates both declarative configuration and automation.
It has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are
widely available.

Infrastructure Types | 3

https://oreil.ly/3WKn4

Kubernetes was originally designed for stateless workloads, and that is what it has
traditionally done best. Kubernetes has developed a reputation as a “platform for
building platforms” in a cloud native way. However, there’s a reasonable argument
that a complete cloud native solution has to take data into account. That’s the goal of
this book: exploring how we make it possible to build cloud native data solutions on
Kubernetes. But first, let’s unpack what “cloud native” means.

What Is Cloud Native Data?
Let’s begin defining the aspects of cloud native data that can help us with a final
definition. First, let’s start with the definition of cloud native from the Cloud Native
Computing Foundation (CNCF):

Cloud native technologies empower organizations to build and run scalable applica‐
tions in modern, dynamic environments such as public, private, and hybrid clouds.
Containers, service meshes, microservices, immutable infrastructure, and declarative
APIs exemplify this approach.
These techniques enable loosely coupled systems that are resilient, manageable, and
observable. Combined with robust automation, they allow engineers to make high-
impact changes frequently and predictably with minimal toil.

Note that this definition describes a goal state, desirable characteristics, and examples
of technologies that embody both. Based on this formal definition, we can synthesize
the qualities that differentiate a cloud native application from other types of deploy‐
ments in terms of how it handles data. Let’s take a closer look at these qualities:

Scalability
If a service can produce a unit of work for a unit of resources, adding more
resources should increase the amount of work a service can perform. Scalability
describes the service’s ability to apply additional resources to produce additional
work. Ideally, services should scale infinitely given an infinite amount of com‐
pute, network, and storage resources. For data, this means scale without the need
for downtime. Legacy systems required a maintenance period while adding new
resources, during which all services had to be shut down. With the needs of cloud
native applications, downtime is no longer acceptable.

Elasticity
Whereas scale is adding resources to meet demand, elasticity is the ability to
free those resources when they are no longer needed. The difference between
scalability and elasticity is highlighted in Figure 1-2. Elasticity can also be called
on-demand infrastructure. In a constrained environment such as a private data‐
center, this is critical for sharing limited resources. For cloud infrastructure that
charges for every resource used, this is a way to prevent paying for running
services you don’t need. When it comes to managing data, this means that we

4 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

https://oreil.ly/OTdhS
https://oreil.ly/OTdhS

need capabilities to reclaim storage space and optimize our usage—for example,
moving older data to less expensive storage tiers.

Figure 1-2. Comparing scalability and elasticity

Self-healing
Bad things happen. When they do, how will your infrastructure respond? Self-
healing infrastructure will reroute traffic, reallocate resources, and maintain
service levels. With larger and more complex distributed applications being
deployed, this is an increasingly important attribute of a cloud native application.
This is what keeps you from getting that 3 A.M. wake-up call. For data, this
means we need capabilities to detect issues with data such as missing data and
data quality.

Observability
If something fails and you aren’t monitoring it, did it happen? Unfortunately,
not only is the answer yes, but that can be an even worse scenario. Distributed
applications are highly dynamic, and visibility into every service is critical for
maintaining service levels. Interdependencies can create complex failure scenar‐
ios, which is why observability is a key part of building cloud native applications.
In data systems, the volumes that are commonplace need efficient ways of mon‐
itoring the flow and state of infrastructure. In most cases, early warnings for
issues can help operators avoid costly downtime.

With all the previous definitions in place, let’s try a definition that expresses these
properties:

Cloud native data approaches empower organizations that have adopted the cloud
native application methodology to incorporate data holistically rather than employ the
legacy of people, process, technology, so that data can scale up and down elastically,
and promote observability and self-healing. This is exemplified by containerized data,
declarative data, data APIs, data meshes, and cloud native data infrastructure (that
is, databases, streaming, and analytics technologies that are themselves architected as
cloud native applications).

What Is Cloud Native Data? | 5

For data infrastructure to keep parity with the rest of our application, we need to
incorporate each piece. This includes automation of scale, elasticity, and self-healing.
APIs are needed to decouple services and increase developer velocity, as well as
enable you to observe the entire stack of your application to make critical decisions.
Taken as a whole, your application and data infrastructure should appear as one unit.

More Infrastructure, More Problems
Whether your infrastructure is in a cloud, on premises, or both (commonly referred
to as hybrid), you could spend a lot of time doing manual configuration. Typing
things into an editor and doing incredibly detailed configuration work requires deep
knowledge of each technology. Over the past 20 years, significant advances have
occurred in the DevOps community, both to code and the way we deploy our infra‐
structure. This is a critical step in the evolution of modern infrastructure. DevOps
has kept us ahead of the scale required for applications, but just barely. Arguably,
the same amount of knowledge is needed to fully script a single database server
deployment. It’s just that now we can do it a million times over (if needed) with tem‐
plates and scripts. What has been lacking is a connectedness between the components
and a holistic view of the entire application stack. Let’s tackle this problem together.
(Foreshadowing: this is a problem that needs to be solved.)

As with any good engineering problem, let’s break it into manageable parts. The first
is resource management. Regardless of the many ways we have developed to work
at scale, fundamentally, we are trying to manage three things as efficiently as possi‐
ble: compute, network, and storage, as shown in Figure 1-3. These are the critical
resources that every application needs and the fuel that’s burned during growth. Not
surprisingly, these are also the resources that carry the monetary component to a
running application. We get rewarded when we use the resources wisely and pay a
literal high price if we don’t. Anywhere you run your application, these are the most
primitive units. When on prem, everything is bought and owned. When using the
cloud, we’re renting.

Figure 1-3. Fundamental resources of cloud applications: compute, network, and storage

6 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

The second part of the problem is having an entire stack act as a single entity. DevOps
has provided many tools to manage individual components, but the connective
tissue between them provides the potential for incredible efficiency—similarly to how
applications are packaged for the desktop but working at datacenter scales. That
potential has launched an entire community around cloud native applications. These
applications are similar to what we’ve always deployed. The difference is that modern
cloud applications aren’t a single process with business logic. They are a complex
coordination of many containerized processes that need to communicate securely
and reliably. Storage has to match the current needs of the application, but remain
aware of how it contributes to the stability of the application. When we think of
deploying stateless applications without data managed in the same control plane, it
sounds incomplete because it is. Breaking your application components into different
control planes creates more complexity and thus goes against the ideals of cloud
native.

Kubernetes Leading the Way
As mentioned before, DevOps automation has kept us on the leading edge of meeting
scale needs. Containerization produced a need for much better orchestration, and
Kubernetes has answered that need. For operators, describing a complete application
stack in a deployment file makes a reproducible and portable infrastructure. This
is because Kubernetes has gone far beyond the simple deployment management
popular in the DevOps tool bag. The Kubernetes control plane applies the deploy‐
ment requirement across the underlying compute, network, and storage to manage
the entire application infrastructure lifecycle. The desired state of your application
is maintained even when the underlying hardware changes. Instead of deploying
VMs, we’re now deploying virtual datacenters as a complete definition, as shown in
Figure 1-4.

The rise in popularity of Kubernetes has eclipsed all other container orchestration
tools used in DevOps. It has overtaken every other way we deploy infrastructure and
shows no signs of slowing down. However, the bulk of early adoption was primarily
in stateless services.

Managing data infrastructure at a large scale was a problem well before the move
to containers and Kubernetes. Stateful services like databases took a different track
parallel to the Kubernetes adoption curve. Many experts advised that Kubernetes
was the wrong way to run stateful services and that those workloads should remain
outside of Kubernetes. That approach worked until it didn’t, and many of those same
experts are now driving the needed changes in Kubernetes to converge the entire
stack.

Kubernetes Leading the Way | 7

Figure 1-4. Moving from virtual servers to virtual datacenters

So, what are the challenges of stateful services? Why has it been hard to deploy data
infrastructure with Kubernetes? Let’s consider each component of our infrastructure.

Managing Compute on Kubernetes
In data infrastructure, counting on Moore’s law has made upgrading a regular event.
Moore’s law predicted that computing capacity would double every 18 months. If
your requirements double every 18 months, you can keep up by replacing hardware.
Eventually, raw compute power started leveling out. Vendors started adding more
processors and cores to keep up with Moore’s law, leading to single-server resource
sharing with VMs and containers, and enabling us to tap into the vast pools of
computing power left stranded in islands of physical servers. Kubernetes expanded
the scope of compute resource management by considering the total datacenter as
one large resource pool across multiple physical devices.

Sharing compute resources with other services is somewhat taboo in the data world.
Data workloads are typically resource intensive, and the potential of one service
impacting another (known as the noisy neighbor problem) has led to policies of keep‐
ing them isolated from other workloads. This one-size-fits-all approach eliminates
the possibility for more significant benefits. First is the assumption that all data
service resource requirements are the same. Apache Pulsar brokers can have far fewer
requirements than an Apache Spark worker, and neither are similar to a sizable
MySQL instance used for online analytical processing (OLAP) reporting. Second,
the ability to decouple your underlying hardware from running applications gives
operators a lot of undervalued flexibility. Cloud native applications that need scale,
elasticity, and self-healing need what Kubernetes can deliver. Data is no exception.

8 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

Managing Network on Kubernetes
Building a distributed application, by nature, requires a reliable and secure network.
Cloud native applications increase the complexity of adding and subtracting services,
making dynamic network configuration a new requirement. Kubernetes manages all
of this inside your virtual datacenter automatically. When new services come online,
it’s like a virtual network team springs into action. IP addresses are assigned, routes
are created, DNS entries are added, the virtual security team ensures that firewall
rules are in place, and when asked, Transport Layer Securiity (TLS) certificates
provide end-to-end encryption.

Data infrastructure tends to be far less dynamic than something like microservices.
A fixed IP with a hostname has been the norm for databases. Analytic systems
like Apache Flink are dynamic in processing but have fixed hardware addressing
assignments. Quality of service is typically at the top of the requirements list and,
as a result, the desire for dedicated hardware and dedicated networks has turned
administrators off of Kubernetes.

The advantage of data infrastructure running in Kubernetes is less about the past
requirements and more about what’s needed for the future. Scaling resources dynami‐
cally can create a waterfall of dependencies. Automation is the only way to maintain
clean and efficient networks, which are the lifeblood of distributed, stateless systems.
The future of cloud native applications will include more components and new chal‐
lenges, such as where applications will run. We can add regulatory compliance and
data sovereignty to previous concerns about latency and throughput. The declarative
nature of Kubernetes networks make it a perfect fit for data infrastructure.

Managing Storage on Kubernetes
Any service that provides persistence or analytics over large volumes of data will need
the right kind of storage device. Early versions of Kubernetes considered storage a
basic commodity part of the stack and assumed that most workloads were ephemeral.
For data, this was a huge mismatch—you can’t let your Postgres datafiles get deleted
every time a container is moved. Additionally, at the outset, the underlying block
storage ranged from high-performance NVMe disks to old 5400 RPM spinning disks,
and you could not always be certain what type of hardware you’d get. Thankfully, this
has been an essential focus of Kubernetes over the past few years and has significantly
improved.

With the addition of features like StorageClasses, it is possible to address specific
requirements for performance, capacity, or both. With automation, we can avoid
the point when you don’t have enough of either. Avoiding surprises is the domain
of capacity management—both initializing the needed capacity and growing when
required. When you run out of capacity in your storage, everything grinds to a halt.

Kubernetes Leading the Way | 9

Coupling the distributed nature of Kubernetes with data storage opens up more
possibilities for self-healing. Automated backups and snapshots keep you ready
for potential data loss scenarios. Placing compute and storage together minimizes
hardware failure risks and allows automatic recovery to the desired state when the
inevitable failure occurs. All of this makes the data storage aspects of Kubernetes
much more attractive.

Cloud Native Data Components
Now that we have defined the resources consumed in cloud native applications, let’s
clarify the types of data infrastructure that powers them. Instead of a comprehensive
list of every possible product, we’ll break them into larger buckets with similar
characteristics:

Persistence
This is likely the category you think of first when we talk about data infrastruc‐
ture. These systems store data and provide access by some method of a query:
relational databases like MySQL and Postgres, and NoSQL systems like Apache
Cassandra and MongoDB. These have been the last holdouts to migrate to
Kubernetes because of their strict resource needs and high-availability require‐
ments. Databases are usually critical to a running application and central to every
other part of the system.

Streaming
The most basic function of streaming is facilitating the high-speed movement
of data from one point to another. Streaming systems provide a variety of
delivery semantics based on a use case. In some cases, data can be delivered to
many clients, or when strict controls are needed, delivered only once. A further
enhancement of streaming is the addition of processing: altering or enhancing
data mid-transport. The need for faster insights into data has propelled streaming
analytics into mission-critical status, catching up with persistence systems in
terms of importance. Examples of streaming systems that move data are Apache
Flink and Apache Kafka, whereas processing system examples are Apache Flink
and Apache Storm.

Batch analytics
One of the first problems in big data is analyzing large sets of data to gain
insights or repurpose into new data. Apache Hadoop was the first large-scale
system for batch analytics that set the expectations around using large volumes
of compute and storage, coordinated in a way to produce the results of complex
analytic processes. Typically, these are issued as jobs distributed throughout the
cluster, as is common with Spark. The concern with costs can be much more
prevalent in these systems because of the sheer volume of resources needed.
Orchestration systems help mitigate the costs by intelligent allocation.

10 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

Looking Forward
There is a compelling future with cloud native data. The path we take between
what we have available today and what we can have in the future is up to us: the
community of people responsible for data infrastructure. Just as we have always done,
we see a new challenge and take it on. There is plenty for everyone to do here, but the
result could be pretty amazing and raise the bar yet again.

A Call for Databases to Modernize on Kubernetes
With Rick Vasquez, Senior Director, Strategic Initiatives, Western Digital

This is something for anyone working with databases in the 2020s. Kubernetes is
leading the charge in building cloud native and distributed systems. Data systems
aren’t leveraging the full capacity and feature set possible if they were better integrated
with Kubernetes. I’m a convert from the “you should never run a database in a
container” way of thinking. Now, I think we should be pushing everybody to have the
main deployment in Kubernetes. My background has always been on scale enterprise
use cases. I don’t see this as a passing fad. I’m looking at the applicability to global
scale for some of the largest companies in the world.

One line of thinking we need to overcome is treating Kubernetes like an operating
system that enables other applications to run on it. That’s the wrong way to look
at running data workloads. If your system runs in a container, then of course it
will work on Kubernetes, right? No! It will react to how the control plane deploys
and runs your application, and the result may or may not be what you want. What
if data systems were more tightly integrated with Kubernetes and could offload
functions to be handled by the Kubernetes control plane? Service discovery, load
balancing, storage orchestration, automated rollouts and rollbacks, automated bin
packing, self-healing, and secret and config management are all powerful things that
allow you to have a consistent developer and SRE experience. The name of the game
with Kubernetes is driving consistency. You can use Kubernetes to become globally
consistent across all your deployments and do them the same way over and over.
But that needs to include database systems. Imagine if you have Postgres, MongoDB,
MySQL, or Cassandra, and it was built natively on Kubernetes. What would you do?

Having the access to use different storage tiers, either local or remote disk—all of it
is declarative in some configuration objects. I want to configure that in and with the
database. If I’m using MySQL, I want logs to be on the local disk, because I don’t want
any bottlenecks. I want certain tables to be on a slower disk that may be over the
network. And I want the last seven days of data to be in hot, local NVMe disks, using
every single bit of capacity that you have with replicas actually doing things—like
offloading reads or multiple write nodes—and one big aggregate for analytics. All of
those things should be possible with a Kubernetes-based deployment with a cloud
native database.

Looking Forward | 11

Databases don’t reason about or have a opinions about how big they are. If you make
a database bigger, it just needs more resources. You can set up auto-scaling to get
bigger, or horizontal scaling. What happens when you want to use the true elasticity
that’s given to you by Kubernetes? It’s not just the scale up and out. It’s the scale back
and down! Why don’t databases just do that? It’s so important to maximize the value
that you’re getting out of a Kubernetes-based deployment or, more broadly, a cloud
native–based deployment. We have a lot of work to do, but the future is worth it.

Rick’s point is specifically about databases, but we can extrapolate his call to action for
our data infrastructure running on Kubernetes. Unlike deploying a data application
on physical servers, introducing the Kubernetes control plane requires a conversation
with the services it runs.

Getting Ready for the Revolution
As engineers who create and run data infrastructure, we have to be ready for coming
advancements, both in the way we operate and the mindset we have about the role of
data infrastructure. The following sections describe what you can do to be ready for
the future of cloud native data running in Kubernetes.

Adopt an SRE Mindset
The role of site reliability engineering (SRE) has grown with the adoption of cloud
native methodologies. If we intend our infrastructure to converge, we as data infra‐
structure engineers must learn new skills and adopt new practices. Let’s begin with
the Wikipedia definition of SRE:

Site reliability engineering is a set of principles and practices that incorporates aspects
of software engineering and applies them to infrastructure and operations problems.
The main goals are to create scalable and highly reliable software systems. Site reliabil‐
ity engineering is closely related to DevOps, a set of practices that combine software
development and IT operations, and SRE has also been described as a specific imple‐
mentation of DevOps.

Deploying data infrastructure has been primarily concerned with the specific compo‐
nents deployed—the “what.” For example, you may find yourself focused on deploy‐
ing MySQL at scale or using Spark to analyze large volumes of data. Adopting an
SRE mindset means going beyond what you are deploying and focusing more on
the how. How will all the pieces work together to meet the application’s goals? A
holistic deployment view considers the way each piece will interact, the required
access, including security, and the observability of every aspect to ensure that service
levels are met.

12 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

https://oreil.ly/lq1rc

If your current primary or secondary role is database administrator (DBA), there is
no better time to make the transition. The trend on LinkedIn shows a year-over-year
decrease in the DBA role and a massive increase for SREs. Engineers who have
learned the skills required to run critical database infrastructure have an essential
baseline that translates into what’s needed to manage cloud native data. These needs
include the following:

• Availability•
• Latency•
• Change management•
• Emergency response•
• Capacity management•

New skills need to be added to this list to become better adapted to the more
significant responsibility of the entire application. These are skills you may already
have, but they include the following:

CI/CD pipelines
Embrace the big picture of taking code from repository to production. There’s
nothing that accelerates application development more in an organization. Con‐
tinuous integration (CI) builds new code into the application stack and auto‐
mates all testing to ensure quality. Continuous delivery (CD) takes the fully
tested and certified builds and automatically deploys them into production.
Used in combination (pipeline), organizations can drastically increase developer
velocity and productivity.

Observability
DevOps practitioners like to make a distinction between the “what” (the actual
service you’re deploying) and the “how” (the methodology of deploying that
service). Monitoring is something everyone with experience in infrastructure is
familiar with. In the “what” part of DevOps, the properties you monitor let you
know your services are healthy, and give you the information needed to diagnose
problems. Observability expands monitoring into the “how” of your application
by considering everything as a whole—for example, tracing the source of latency
in a highly distributed application by giving insight into every hop that data takes
as it traverses your system.

Knowing the code
When things go bad in a large, distributed application, the cause is not always
a process failure. In many cases, the problem could be a bug in the code or a
subtle implementation detail. Being responsible for the entire health of the appli‐
cation, you will need to understand the code that is executing in the provided
environment. Properly implemented observability will help you find problems,

Getting Ready for the Revolution | 13

https://oreil.ly/4VFc7
https://oreil.ly/4VFc7

and that includes the software instrumentation. SREs and development teams
need to have clear and regular communication, and code is common ground.

Embrace Distributed Computing
Deploying your applications in Kubernetes means embracing all that distributed
computing offers. When you are accustomed to single-system thinking, that transi‐
tion can be hard, mainly in the shift in thinking around expectations and understand‐
ing where problems crop up. For example, with every process contained in a single
system, latency will be close to zero. It’s not what you have to manage. CPU and
memory resources are the primary concern there. In the 1990s, Sun Microsystems
was leading in the growing field of distributed computing and published this list of
eight common fallacies of distributed computing:

• The network is reliable.•
• Latency is zero.•
• Bandwidth is infinite.•
• The network is secure.•
• Topology doesn’t change.•
• There is one administrator.•
• Transport cost is zero.•
• The network is homogeneous.•

Behind each of these fallacies is surely the story of a developer who made a bad
assumption, got an unexpected result, and lost countless hours trying to solve the
wrong problem. Embracing distributed methodologies is worth the effort in the long
run. They allow us to build large-scale applications and will continue to do so for a
long time. The challenge is worth the reward, and for those of us who do this daily, it
can be a lot of fun too! Kubernetes applications will test each of these fallacies, given
its default distributed nature. When you plan your deployment, consider things such
as the cost of transport from one place to another or latency implications. They will
save you a lot of wasted time and redesign.

Principles of Cloud Native Data Infrastructure
As engineering professionals, we seek standards and best practices to build upon.
To make data the most “cloud native” it can be, we need to embrace everything
Kubernetes offers. A truly cloud native approach means adopting key elements of
the Kubernetes design paradigm and building from there. An entire cloud native
application that includes data must be one that can run effectively on Kubernetes.
Let’s explore a few Kubernetes design principles that point the way.

14 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

https://oreil.ly/XAR93

Principle 1: Leverage compute, network, and storage as commodity APIs
One of the keys to the success of cloud computing is the commoditization of
compute, networking, and storage as resources we can provision via simple APIs.
Consider this sampling of AWS services:

Compute
We allocate VMs through Amazon Elastic Compute Cloud (EC2) and Auto
Scaling groups (ASGs).

Network
We manage traffic using Elastic Load Balancers (ELB), Route 53, and virtual
private cloud (VPC) peering.

Storage
We persist data using options such as the Simple Storage Service (S3) for long-
term object storage, or Elastic Block Store (EBS) volumes for our compute
instances.

Kubernetes offers its own APIs to provide similar services for a world of container‐
ized applications:

Compute
Pods, Deployments, and ReplicaSets manage the scheduling and lifecycle of
containers on computing hardware.

Network
Services and Ingress expose a container’s networked interfaces.

Storage
PersistentVolumes (PVs) and StatefulSets enable flexible association of containers
to storage.

Kubernetes resources promote the portability of applications across Kubernetes dis‐
tributions and service providers. What does this mean for databases? They are simply
applications that leverage compute, networking, and storage resources to provide the
services of data persistence and retrieval:

Compute
A database needs sufficient processing power to process incoming data and
queries. Each database node is deployed as a Pod and grouped into StatefulSets,
enabling Kubernetes to manage scaling out and scaling in.

Network
A database needs to expose interfaces for data and control. We can use Kuber‐
netes Services and Ingress controllers to expose these interfaces.

Getting Ready for the Revolution | 15

Storage
A database uses PersistentVolumes of a specified StorageClass to store and
retrieve data.

Thinking of databases in terms of their compute, network, and storage needs removes
much of the complexity involved in deployment on Kubernetes.

Principle 2: Separate the control and data planes
Kubernetes promotes the separation of control and data planes. The Kubernetes
API server is the front door of the control plane, providing the interface used by
the data plane to request computing resources, while the control plane manages
the details of mapping those requests onto an underlying infrastructure-as-a-service
(IaaS) platform.

We can apply this same pattern to databases. For example, a database data plane
consists of ports exposed for clients, and for distributed databases, ports used for
communication between database nodes. The control plane includes interfaces pro‐
vided by the database for administration and metrics collection and tooling that
performs operational maintenance tasks. Much of this capability can and should be
implemented via the Kubernetes operator pattern. Operators define custom resources
(CRDs) and provide control loops that observe the state of those resources, taking
actions to move them toward the desired state, helping extend Kubernetes with
domain-specific logic.

Principle 3: Make observability easy
The three pillars of observable systems are logging, metrics, and tracing. Kubernetes
provides a great starting point by exposing the logs of each container to third-party
log aggregation solutions. Multiple solutions are available for metrics, tracing, and
visualization, and we’ll explore several of them in this book.

Principle 4: Make the default configuration secure
Kubernetes networking is secure by default: ports must be explicitly exposed in order
to be accessed externally to a pod. This sets a valuable precedent for database deploy‐
ment, forcing us to think carefully about how each control plane and data plane
interface will be exposed and which interfaces should be exposed via a Kubernetes
Service. Kubernetes also provides facilities for secret management that can be used
for sharing encryption keys and configuring administrative accounts.

Principle 5: Prefer declarative configuration
In the Kubernetes declarative approach, you specify the desired state of resources,
and controllers manipulate the underlying infrastructure in order to achieve that
state. Operators for data infrastructure can manage the details of how to scale up

16 | Chapter 1: Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics

intelligently—for example, deciding how to reallocate shards or partitions when scal‐
ing out additional nodes or selecting which nodes to remove to scale down elastically.

The next generation of operators should enable us to specify rules for stored data
size, number of transactions per second, or both. Perhaps we’ll be able to specify
maximum and minimum cluster sizes, and when to move less frequently used data
to object storage. This will allow for more automation and efficiency in our data
infrastructure.

Summary
At this point, we hope you are ready for the exciting journey in the pages ahead.
The move to cloud native applications must include data, and to do this, we will
leverage Kuberentes to include stateless and stateful services. This chapter covered
cloud native data infrastructure that can scale elastically and resist any downtime due
to system failures, and how to build these systems. We as engineers must embrace
the principles of cloud native infrastructure and, in some cases, learn new skills.
Congratulations—you have begun a fantastic journey into the future of building
cloud native applications. Turn the page, and let’s go!

Summary | 17

CHAPTER 2

Managing Data Storage on Kubernetes

There is no such thing as a stateless architecture. All applications store state somewhere.
—Alex Chircop, CEO, StorageOS

In the previous chapter, we painted a picture of a possible near future with powerful,
stateful, data-intensive applications running on Kubernetes. To get there, we’re going
to need data infrastructure for persistence, streaming, and analytics. To build out this
infrastructure, we’ll need to leverage the primitives that Kubernetes provides to help
manage the three commodities of cloud computing: compute, network, and storage.
In the next several chapters, we’ll begin to look at these primitives, starting with
storage, in order to see how they can be combined to create the data infrastructure we
need.

To echo the point raised by Alex Chircop, all applications must store their state some‐
where, which is why we’ll focus in this chapter on the basic abstractions Kubernetes
provides for interacting with storage. We’ll also look at the emerging innovations
being offered by storage vendors and open source projects creating storage infra‐
structure for Kubernetes that itself embodies cloud native principles.

Let’s start our exploration with a look at managing persistence in containerized
applications in general and use that as a jumping-off point for our investigation into
data storage on Kubernetes.

Docker, Containers, and State
The problem of managing state in distributed, cloud native applications is not unique
to Kubernetes. A quick search will show that stateful workloads have been an area
of concern on other container orchestration platforms such as Mesos and Docker
Swarm. Part of this has to do with the nature of container orchestration, and part is
driven by the nature of containers themselves.

19

First, let’s consider containers. One of the key value propositions of containers is their
ephemeral nature. Containers are designed to be disposable and replaceable, so they
need to start quickly and use as few resources for overhead processing as possible.
For this reason, most container images are built from base images containing stream‐
lined, Linux-based, open source operating systems such as Ubuntu, that boot quickly
and incorporate only essential libraries for the contained application or microservice.
As the name implies, containers are designed to be self-contained, incorporating
all their dependencies in immutable images, while their configuration and data are
externalized. These properties make containers portable so that we can run them
anywhere a compatible container runtime is available.

As shown in Figure 2-1, containers require less overhead than traditional VMs, which
run a guest operating system per VM, with a hypervisor layer to implement system
calls onto the underlying host operating system.

Figure 2-1. Comparing containerization to virtualization

Although containers have made applications more portable, it’s proven a bigger
challenge to make their data portable. Since a container itself is ephemeral, any data
that is to survive beyond the life of the container must by definition reside externally.
The key feature for a container technology is to provide mechanisms to link to
persistent storage, and the key feature for a container orchestration technology is the
ability to schedule containers in such a way that they can access persistent storage
efficiently.

20 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/5gE1u

Managing State in Docker
Let’s take a look at the most popular container technology, Docker, to see how
containers can store data. The key storage concept in Docker is the volume. From
the perspective of a Docker container, a volume is a directory that can support
read-only or read/write access. Docker supports the mounting of multiple data stores
as volumes. We’ll introduce several options so we can later note their equivalents in
Kubernetes.

Bind Mounts
The simplest approach for creating a volume is to bind a directory in the container to
a directory on the host system. This is called a bind mount, as shown in Figure 2-2.

Figure 2-2. Using Docker bind mounts to access the host filesystem

When starting a container within Docker, you specify a bind mount with the
--volume or -v option and the local filesystem path and container path to use. For
example, you could start an instance of the Nginx web server and map a local project
folder from your development machine into the container. This is a command you
can test out in your own environment if you have Docker installed:

docker run -it --rm -d --name web -p 8080:80 \
 -v ~/site-content:/usr/share/nginx/html nginx

This exposes the web server on port 8080 on your local host. If the local path
directory does not already exist, the Docker runtime will create it. Docker allows
you to create bind mounts with read-only or read/write permissions. Because the
volume is represented as a directory, the application running in the container can put
anything that can be represented as a file into the volume—even a database.

Docker, Containers, and State | 21

Bind mounts are quite useful for development work. However, using bind mounts
is not suitable for a production environment since this leads to a container being
dependent on a file being present in a specific host. This might be fine for a single-
machine deployment, but production deployments tend to be spread across multiple
hosts. Another concern is the potential security hole that is presented by opening up
access from the container to the host filesystem. For these reasons, we need another
approach for production deployments.

Volumes
The preferred option within Docker is to use volumes. Docker volumes are created
and managed by Docker under a specific directory on the host filesystem. The
Docker volume create command is used to create a volume. For example, you might
create a volume called site-content to store files for a website:

docker volume create site-content

If no name is specified, Docker assigns a random name. After creation, the
resulting volume is available to mount in a container using the form -v VOLUME-
NAME:CONTAINER-PATH. For example, you might use a volume like the one just created
to allow an Nginx container to read the content, while allowing another container to
edit the content, using the ro option:

docker run -it --rm -d --name web \
 -v site-content:/usr/share/nginx/html:ro nginx

Docker Volume Mount Syntax

Docker also supports a --mount syntax that allows you to specify
the source and target folders more explicitly. This notation is con‐
sidered more modern, but it is also more verbose. The syntax
shown in the preceding example is still valid and is the more
commonly used syntax.

As we’ve implied, a Docker volume can be mounted in more than one container at
once, as shown in Figure 2-3.

The advantage of using Docker volumes is that Docker manages the filesystem
access for containers, which makes it much simpler to enforce capacity and security
restrictions on containers.

22 | Chapter 2: Managing Data Storage on Kubernetes

Figure 2-3. Creating Docker volumes to share data between containers on the host

Tmpfs Mounts
Docker supports two types of mounts that are specific to the operating system used
by the host system: tmpfs (or temporary filesystem) and named pipes. Named pipes are
available on Docker for Windows, but since they are typically not used in Kubernetes,
we won’t give much consideration to them here.

Tmpfs mounts are available when running Docker on Linux. A tmpfs mount exists
only in memory for the lifespan of the container, so the contents are never present
on disk, as shown in Figure 2-4. Tmpfs mounts are useful for applications that are
written to persist a relatively small amount of data, especially sensitive data that you
don’t want written to the host filesystem. Because the data is stored in memory, faster
access is a side benefit.

Figure 2-4. Creating a temporary volume using Docker tmpfs

Docker, Containers, and State | 23

To create a tmpfs mount, use the docker run --tmpfs option. For example, you
could use a command like this to specify a tmpfs volume to store Nginx logs for a web
server processing sensitive data:

docker run -it --rm -d --name web —-tmpfs /var/log/nginx nginx

The --mount option may also be used for more control over configurable options.

Volume Drivers
Docker Engine has an extensible architecture that allows you to add customized
behavior via plug-ins for capabilities including networking, storage, and authoriza‐
tion. Third-party storage plug-ins are available for multiple open source and com‐
mercial providers, including the public clouds and various networked filesystems.
Taking advantage of these involves installing the plug-in with Docker Engine and
then specifying the associated volume driver when starting Docker containers using
that storage, as shown in Figure 2-5.

Figure 2-5. Using Docker volume drivers to access networked storage

For more information on working with the various types of volumes supported in
Docker, see the Docker storage documentation, as well as the documentation for the
docker run command.

24 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/b9P9X
https://oreil.ly/vVPb4
https://oreil.ly/Tj3NT

File, Block, and Object Storage
In our modern era of cloud architectures, the three main formats in which storage
is traditionally provided to applications are files, blocks, and objects. Each stores and
provides access to data in different ways:

File storage
Represents data as a hierarchy of folders, each of which can contain files. The file
is the basic unit of access for both storage and retrieval. The root directory that
is to be accessed by a container is mounted into the container filesystem such
that it looks like any other directory. Each of the public clouds provides its own
file storage (for example, Google Cloud Filestore or Amazon Elastic Filestore).
Gluster is an open source distributed filesystem. Many of these systems are
compatible with the Network File System (NFS), a distributed filesystem protocol
invented at Sun Microsystems in 1984 that is still in common use.

Block storage
Organizes data in chunks and allocates those chunks across a set of managed
volumes. When you provide data to a block storage system, it divides the data
into chunks of varying sizes and distributes those chunks in order to use the
underlying volumes most efficiently. When you query a block storage system,
it retrieves the chunks from their various locations and provides the data back
to you. This flexibility makes block storage a great solution when you have a
heterogeneous set of storage devices available. Block storage doesn’t provide a lot
of metadata handling, which can place more burden on the application.

Object storage
Organizes data in units known as objects. Each object is referenced by a unique
identifier, or key, and can support rich metadata tagging that enables searching.
Objects are organized in buckets. This flat, nonhierarchical organization makes
object storage easy to scale. S3 is the canonical example of object storage, and
most object storage products will claim compatibility with the S3 API.

If you’re tasked with building or selecting data infrastructure, you need to under‐
stand the strengths and weaknesses of these patterns. Throughout the rest of the
book, you’ll learn how each storage type is used by various data infrastructure
projects. There are trade-offs to consider when choosing a storage format and
whether to use a centralized or distributed storage architecture. For example, in
Chapter 7, we’ll look at a refactored version of Cassandra that uses object storage
for long-term persistence instead of file storage on local disks.

Docker, Containers, and State | 25

https://www.gluster.org
https://oreil.ly/yrSWs

Kubernetes Resources for Data Storage
Now that you understand basic concepts of container and cloud storage, let’s see
what Kubernetes brings to the table. In this section, we’ll introduce some of the key
Kubernetes concepts, or resources in the API for attaching storage to containerized
applications. Even if you are already somewhat familiar with these resources, you’ll
want to stay tuned, as we’ll focus particularly on how each one relates to stateful data.

Pods and Volumes
One of the first Kubernetes resources new users encounter is the Pod. This is the basic
unit of deployment of a Kubernetes workload. A Pod provides an environment for
running containers, and the Kubernetes control plane is responsible for deploying
Pods to Kubernetes Worker Nodes.

The Kubelet is a component of the Kubernetes control plane that runs on each
Worker Node. It is responsible for running Pods on a node, as well as monitoring the
health of these Pods and the containers inside them. These elements are summarized
in Figure 2-6.

Figure 2-6. Using volumes in Kubernetes Pods

While a Pod can contain multiple containers, the best practice is for a Pod to contain
a single application container, along with optional additional helper containers, as
shown in Figure 2-6. These helper containers might include init containers that run
prior to the main application container in order to perform configuration tasks, or
sidecar containers that run alongside the main application container to provide helper
services such as observability or management. In later chapters, you’ll see how data
infrastructure deployments can take advantage of these architectural patterns.

26 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/1ITFv

Now let’s see how persistence is supported within this Pod architecture. As with
Docker, the “on disk” data in a container is lost when a container crashes. The Kubelet
is responsible for restarting the container, but this new container is a replacement for
the original container—it will have a distinct identity and start with a completely new
state.

In Kubernetes, the term volume is used to represent access to storage within a Pod.
By using a volume, the container has the ability to persist data that will outlive the
container (and potentially the Pod as well, as we’ll see shortly). A volume may be
accessed by multiple containers in a Pod. Each container has its own volumeMount
within the Pod that specifies the directory to which it should be mounted, allowing
the mount point to differ among containers.

In multiple cases, you might want to share data between containers in a Pod:

• An init container creates a custom configuration file for the particular environ‐•
ment that the application container mounts to obtain configuration values.

• The application Pod writes logs, and a sidecar Pod reads those logs to identify•
alert conditions that are reported to an external monitoring tool.

However, you’ll likely want to avoid situations in which multiple containers are
writing to the same volume, because you’ll have to ensure that the multiple writers
don’t conflict—Kubernetes does not do that for you.

Preparing to Run Sample Code

The examples in this book assume you have access to a running
Kubernetes cluster. For the examples in this chapter, a development
cluster on your local machine such as kind, K3s, or Docker Desk‐
top should be sufficient. The source code used in this section is
located at the book’s repository.

Using a volume in a Pod requires two steps: defining the volume and mounting the
volume in each container that needs access. Let’s look at a sample YAML configura‐
tion that defines a Pod with a single application container, the Nginx web server, and
a single volume. The source code is in this book’s repository:

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: my-app
 image: nginx
 volumeMounts:

Kubernetes Resources for Data Storage | 27

https://oreil.ly/VjIq1
https://oreil.ly/nlBJA

 - name: web-data
 mountPath: /app/config
 volumes:
 - name: web-data

Notice the two parts of the configuration: the volume is defined under spec.volumes,
and the usage of the volumes is defined under spec.containers.volumeMounts.
First, the name of the volume is referenced under volumeMounts, and the directory
where it is to be mounted is specified by mountPath. When declaring a Pod specifica‐
tion, volumes and volume mounts go together. For your configuration to be valid, a
volume must be declared before being referenced, and a volume must be used by at
least one container in the Pod.

You may have also noticed that the volume has only a name. You haven’t specified any
additional information. What do you think this will do? You could try this out for
yourself by using the example source code file nginx-pod.yaml or cutting and pasting
the preceding configuration to a file with that name, and executing the kubectl
command against a configured Kubernetes cluster:

kubectl apply -f nginx-pod.yaml

You can get more information about the Pod that was created by using the kubectl
get pod command, for example:

kubectl get pod my-pod -o yaml | grep -A 5 " volumes:"

And the results might look something like this:

 volumes:
 - emptyDir: {}
 name: web-data
 - name: default-token-2fp89
 secret:
 defaultMode: 420

As you can see, Kubernetes supplied additional information when creating the
requested volume, defaulting it to a type of emptyDir. Other default attributes may
differ depending on what Kubernetes engine you are using, but we won’t discuss
them further here.

Several types of volumes can be mounted in a container; let’s have a look.

Ephemeral volumes
You’ll remember tmpfs volumes from our previous discussion of Docker volumes,
which provide temporary storage for the lifespan of a single container. Kubernetes
provides the concept of an ephemeral volume, which is similar, but at the scope of
a Pod. The emptyDir introduced in the preceding example is a type of ephemeral
volume.

28 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/zaiKG

Ephemeral volumes can be useful for data infrastructure or other applications that
want to create a cache for fast access. Although they do not persist beyond the
lifespan of a Pod, they can still exhibit some of the typical properties of other volumes
for longer-term persistence, such as the ability to snapshot. Ephemeral volumes are
slightly easier to set up than PersistentVolumes because they are declared entirely
inline in the Pod definition without reference to other Kubernetes resources. As you
will see next, creating and using PersistentVolumes is a bit more involved.

Other Ephemeral Storage Providers

Some of the in-tree and CSI storage drivers we’ll discuss next
that provide PersistentVolumes also provide an ephemeral volume
option. You’ll want to check the documentation of the specific
provider to see what options are available.

Configuration volumes
Kubernetes provides several constructs for injecting configuration data into a Pod as a
volume. These volume types are also considered ephemeral in the sense that they do
not provide a mechanism for allowing applications to persist their own data.

The following volume types are relevant to our exploration in this book since they
provide a useful means of configuring applications and data infrastructure running
on Kubernetes. We’ll describe each of them briefly:

ConfigMap volumes
A ConfigMap is a Kubernetes resource that is used to store configuration values
external to an application as a set of name-value pairs. For example, an applica‐
tion might require connection details for an underlying database such as an
IP address and port number. Defining these in a ConfigMap is a good way to
externalize this information from the application. The resulting configuration
data can be mounted into the application as a volume, where it will appear as a
directory. Each configuration value is represented as a file wherein the filename
is the key and the contents of the file contain the value. See the Kubernetes
documentation for more information on mounting ConfigMaps as volumes.

Secret volumes
A Secret is similar to a ConfigMap, only it is intended for securing access to
sensitive data that requires protection. For example, you might want to create a
Secret containing database access credentials such as a username and password.
Configuring and accessing Secrets is similar to using ConfigMap, with the addi‐
tional benefit that Kubernetes helps decrypt the Secret upon access within the
Pod. See the Kubernetes documentation for more information on mounting
Secrets as volumes.

Kubernetes Resources for Data Storage | 29

https://oreil.ly/zaiKG
https://oreil.ly/mPkMB
https://oreil.ly/mPkMB

Downward API volumes
The Kubernetes downward API exposes metadata about Pods and containers
either as environment variables or as volumes. This is the same metadata that is
used by kubectl and other clients.

The available Pod metadata includes the Pod’s name, ID, Namespace, labels, and
annotations. The containerized application might aim to use the Pod information
for logging and metrics reporting, or to determine database or table names.

The available container metadata includes the requested and maximum amounts
of resources such as CPU, memory, and ephemeral storage. The containerized
application might seek to use this information in order to throttle its own
resource usage. See the Kubernetes documentation for an example of injecting
Pod information as a volume.

hostPath volumes

A hostPath volume mounts a file or directory into a Pod from the Kubernetes
Worker Node where it is running. This is analogous to the bind mount concept in
Docker, discussed in “Bind Mounts” on page 21. Using a hostPath volume has one
advantage over an emptyDir volume: the data will survive the restart of a Pod.

However, using hostPath volumes has some disadvantages. First, in order for a
replacement Pod to access the data of the original Pod, it will need to be restarted
on the same Worker Node. While Kubernetes does give you the ability to control
which node a Pod is placed on using affinity, this tends to constrain the Kubernetes
scheduler from optimal placement of Pods, and if the node goes down for some
reason, the data in the hostPath volume is lost. Second, as with Docker bind mounts,
there is a security concern with hostPath volumes in terms of allowing access to
the local filesystem. For these reasons, hostPath volumes are recommended only for
development deployments.

Cloud volumes
It is possible to create Kubernetes volumes that reference storage locations beyond
just the Worker Node where a Pod is running, as shown in Figure 2-7. These can be
grouped into volume types that are provided by named cloud providers, and those
that attempt to provide a more generic interface.

These include the following:

• The awsElasticBlockStore volume type is used to mount volumes on Amazon•
Web Services (AWS) Elastic Block Store (EBS). Many databases use block storage
as their underlying storage layer.

30 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/LrOn2
https://oreil.ly/LrOn2
https://oreil.ly/kjr8P
https://oreil.ly/CmTCt

• The gcePersistentDisk volume type is used to mount Google Compute Engine•
(GCE) persistent disks (PD), another example of block storage.

• Two types of volumes are supported for Microsoft Azure: azureDisk for Azure•
Data Disk volumes, and azureFile for Azure File volumes.

• The cinder volume type can be used to access OpenStack Cinder volumes for•
OpenStack deployments.

Figure 2-7. Kubernetes Pods directly mounting cloud provider storage

Usage of these types typically requires configuration on the cloud provider, and
access from Kubernetes clusters is typically confined to storage in the same cloud
region and account. Check your cloud provider’s documentation for more details.

Additional volume providers
Numerous additional volume providers vary in the types of storage provided. Here
are a few examples:

• The fibreChannel volume type can be used for SAN solutions implementing the•
Fibre Channel protocol.

• The gluster volume type is used to access file storage using the Gluster dis‐•
tributed filesystem referenced previously.

• An iscsi volume mounts an existing Internet Small Computer Systems Interface•
(iSCSI) volume into your Pod.

Kubernetes Resources for Data Storage | 31

https://oreil.ly/01JEm
https://oreil.ly/pIann
https://oreil.ly/kInGC
https://oreil.ly/VVLrx
https://www.gluster.org

• An nfs volume allows an existing NFS share to be mounted into a Pod.•

We’ll examine more volume providers that implement the Container Attached Stor‐
age pattern in “Container Attached Storage” on page 45. Table 2-1 compares Docker
and Kubernetes storage concepts we’ve covered so far.

Table 2-1. Comparing Docker and Kubernetes storage options

Type of storage Docker Kubernetes
Access to persistent storage from various providers Volume (accessed via

volume drivers)
Volume (accessed via in-tree or CSI
drivers)

Access to host filesystem (not recommended for
production)

Bind mount hostPath volume

Temporary storage available while container (or Pod)
is running

Tmpfs emptyDir and other ephemeral
volumes

Configuration and environment data (read-only) (No direct equivalent) ConfigMap, Secret, downward API

How Do You Choose a Kubernetes Storage Solution?
Given the number of storage options available, trying to determine the kind of
storage you should use for your application can certainly be intimidating. Along with
determining whether you need file, block, or object storage, you’ll want to consider
your latency and throughput requirements, as well as your expected storage volume.
For example, if your read latency requirements are aggressive, you’ll most likely need
a storage solution that keeps data in the same datacenter where it is accessed.

Next, you’ll want to consider any existing commitments or resources you have. Per‐
haps your organization has a mandate or bias toward using services from a preferred
cloud provider. The cloud providers will frequently provide cost incentives for using
their services, but you’ll want to weigh this against the risk of lock-in to a specific
service. Alternatively, you might have an investment in a storage solution in an
on-premises datacenter that you need to leverage.

Overall, cost tends to be the overriding factor in choosing storage solutions, especially
over the long term. Make sure your modeling includes not only the cost of the
physical storage and any managed services, but also the operational cost involved in
managing your chosen solution.

In this section, we’ve discussed how to use volumes to provide storage that can be
shared by multiple containers within the same Pod. While using volumes is sufficient
for some use cases, it doesn’t address all needs. A volume doesn’t provide the ability
to share storage resources among Pods. The definition of a particular storage location
is tied to the definition of the Pod. Managing storage for individual Pods doesn’t scale
well as the number of Pods deployed in your Kubernetes cluster increases.

32 | Chapter 2: Managing Data Storage on Kubernetes

Thankfully, Kubernetes provides additional primitives that help simplify the process
of provisioning and mounting storage volumes for both individual Pods and groups
of related Pods. We’ll investigate these concepts in the next several sections.

PersistentVolumes
The key innovation the Kubernetes developers introduced for managing storage is
the PersistentVolume subsystem. This subsystem consists of three additional Kuber‐
netes resources that work together: PersistentVolumes, PersistentVolumeClaims, and
StorageClasses. These allow you to separate the definition and lifecycle of storage
from the way it is used by Pods, as shown in Figure 2-8:

• Cluster administrators define PersistentVolumes, either explicitly or by creating a•
StorageClass that can dynamically provision new PersistentVolumes.

• Application developers create PersistentVolumeClaims that describe the storage•
resource needs of their applications, and these PersistentVolumeClaims can be
referenced as part of volume definitions in Pods.

• The Kubernetes control plane manages the binding of PersistentVolumeClaims•
to PersistentVolumes.

Figure 2-8. PersistentVolumes, PersistentVolumeClaims, and StorageClasses

Let’s look first at the PersistentVolume resource (often abbreviated PV), which defines
access to storage at a specific location. PersistentVolumes are typically defined
by cluster administrators for use by application developers. Each PV can repre‐
sent storage of the same types discussed in the previous section, such as storage
offered by cloud providers, networked storage, or storage directly on the Worker
Node, as shown in Figure 2-9. Since they are tied to specific storage locations,
PersistentVolumes are not portable between Kubernetes clusters.

Kubernetes Resources for Data Storage | 33

https://oreil.ly/ec8BB

Figure 2-9. Types of Kubernetes PersistentVolumes

Local PersistentVolumes

Figure 2-9 also introduces a PersistentVolume type called local, which represents
storage mounted directly on a Kubernetes Worker Node such as a disk or partition.
Like hostPath volumes, a local volume may also represent a directory. A key differ‐
ence between local and hostPath volumes is that when a Pod using a local volume
is restarted, the Kubernetes scheduler ensures that the Pod is rescheduled on the same
node so it can be attached to the same persistent state. For this reason, local volumes
are frequently used as the backing store for data infrastructure that manages its own
replication, as we’ll see in Chapter 4.

The syntax for defining a PersistentVolume will look familiar, as it is similar to
defining a volume within a Pod. For example, here is a YAML configuration file that
defines a local PersistentVolume. The source code is in this book’s repository:

apiVersion: v1
kind: PersistentVolume
metadata:
 name: my-volume
spec:
 capacity:
 storage: 3Gi
 accessModes:
 - ReadWriteOnce
 local:
 path: /app/data
 nodeAffinity:

34 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/b1zHe

 required:
 nodeSelectorTerms:
 - matchExpressions:
 - key: kubernetes.io/hostname
 operator: In
 values:
 - node1

As you can see, this code defines a local volume named my-volume on the Worker
Node node1, 3 GB in size, with an access mode of ReadWriteOnce. The following
access modes are supported for PersistentVolumes:

ReadWriteOnce

The volume can be mounted for both reading and writing by a single node at a
time, although multiple Pods running on that node may access the volume.

ReadOnlyMany

The volume can be mounted by multiple nodes simultaneously, for reading only.

ReadWriteMany

The volume can be mounted for both reading and writing by many nodes at the
same time.

Choosing a Volume Access Mode

The right access mode for a given volume will be driven by the
type of workload. For example, many distributed databases will be
configured with dedicated storage per Pod, making ReadWriteOnce
a good choice.

Besides capacity and access mode, other attributes for PersistentVolumes include the
following:

• The volumeMode, which defaults to Filesystem but may be overridden to Block.•
• The reclaimPolicy defines what happens when a Pod releases its claim on this•

PersistentVolume. The legal values are Retain, Recycle, and Delete.
• A PersistentVolume can have a nodeAffinity that designates which Worker•

Node or nodes can access this volume. This is optional for most types but
required for the local volume type.

• The class attribute binds this PV to a particular StorageClass, which is a concept•
we’ll introduce later in this chapter.

• Some PersistentVolume types expose mountOptions that are specific to that type.•

Kubernetes Resources for Data Storage | 35

https://oreil.ly/mm5HT
https://oreil.ly/TSKOD

Differences in Volume Options

Options differ among volume types. For example, not every access
mode or reclaim policy is accessible for every PersistentVolume
type, so consult the documentation on your chosen type for more
details.

You use the kubectl describe persistentvolume command (or kubectl describe
pv for short) to see the status of the PersistentVolume:

kubectl describe pv my-volume
Name: my-volume
Labels: <none>
Annotations: <none>
Finalizers: [kubernetes.io/pv-protection]
StorageClass:
Status: Available
Claim:
Reclaim Policy: Retain
Access Modes: RWO
VolumeMode: Filesystem
Capacity: 3Gi
Node Affinity:
 Required Terms:
 Term 0: kubernetes.io/hostname in [node1]
Message:
Source:
 Type: LocalVolume (a persistent volume backed by local storage on a node)
 Path: /app/data
Events: <none>

The PersistentVolume has a status of Available when first created. A PersistentVo‐
lume can have multiple status values:

Available

The PersistentVolume is free and not yet bound to a claim.

Bound

The PersistentVolume is bound to a PersistentVolumeClaim, which is listed
elsewhere in the describe output.

Released

An existing claim on the PersistentVolume has been deleted, but the resource has
not yet been reclaimed, so the resource is not yet Available.

Failed

The volume has failed its automatic reclamation.

Now that you’ve learned how storage resources are defined in Kubernetes, the next
step is to learn how to use that storage in your applications.

36 | Chapter 2: Managing Data Storage on Kubernetes

PersistentVolumeClaims
As we’ve discussed, Kubernetes separates the definition of storage from its usage.
Often these tasks are performed by different roles: cluster administrators define the
storage, while application developers use the storage. PersistentVolumes are typically
defined by the administrators and reference storage locations that are specific to
that cluster. Developers can then specify the storage needs of their applications
using PersistentVolumeClaims (PVCs), which Kubernetes uses to associate Pods with
a PersistentVolume meeting the specified criteria. As shown in Figure 2-10, a Per‐
sistentVolumeClaim is used to reference the various volume types we introduced
previously, including local PersistentVolumes, or external storage provided by cloud
or networked storage vendors.

Figure 2-10. Accessing PersistentVolumes using PersistentVolumeClaims

Here’s what the process looks like from an application developer perspective. First,
you’ll create a PVC representing your desired storage criteria. For example, here’s a
claim that requests 1 GB of storage with exclusive read/write access. The source code
is in this book’s repository:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: my-claim
spec:
 storageClassName: ""
 accessModes:
 - ReadWriteOnce

Kubernetes Resources for Data Storage | 37

https://oreil.ly/njKPH

 resources:
 requests:
 storage: 1Gi

One interesting thing you may have noticed about this claim is that the storageClass
Name is set to an empty string. We’ll explain the significance of this when we discuss
StorageClasses in the next section. You can reference the claim in the definition of a
Pod like this. The source code is in this book’s repository:

apiVersion: v1
kind: Pod
metadata:
 name: my-pod
spec:
 containers:
 - name: nginx
 image: nginx
 volumeMounts:
 - mountPath: "/app/data"
 name: my-volume
 volumes:
 - name: my-volume
 persistentVolumeClaim:
 claimName: my-claim

As you can see, the PersistentVolume is represented within the Pod as a volume.
The volume is given a name and a reference to the claim. This is considered to be
a volume of the persistentVolumeClaim type. As with other volumes, the volume
is mounted into a container at a specific mount point—in this case, into the main
application Nginx container at the path /app/data.

A PVC also has a state, which you can see if you retrieve the status:

kubectl describe pvc my-claim
Name: my-claim
Namespace: default
StorageClass:
Status: Bound
Volume: my-volume
Labels: <none>
Annotations: pv.kubernetes.io/bind-completed: yes
 pv.kubernetes.io/bound-by-controller: yes
Finalizers: [kubernetes.io/pvc-protection]
Capacity: 3Gi
Access Modes: RWO
VolumeMode: Filesystem
Mounted By: <none>
Events: <none>

38 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/VnJN4

A PVC has one of two status values: Bound, meaning it is bound to a volume (as
in this example), or Pending, meaning that it has not yet been bound to a volume.
Typically, a status of Pending means that no PV matching the claim exists.

Here’s what’s happening behind the scenes. Kubernetes uses the PVCs referenced as
volumes in a Pod and takes those into account when scheduling the Pod. Kubernetes
identifies PersistentVolumes that match properties associated with the claim and
binds the smallest available module to the claim. The properties might include a label,
or node affinity, as we saw previously for local volumes.

When starting up a Pod, the Kubernetes control plane makes sure the PersistentVo‐
lumes are mounted to the Worker Node. Then, each requested storage volume is
mounted into the Pod at the specified mount point.

StorageClasses
The previous example demonstrates how Kubernetes can bind PVCs to Persistent‐
Volumes that already exist. This model in which PersistentVolumes are explicitly
created in the Kubernetes cluster is known as static provisioning. The Kubernetes
PersistentVolume subsystem also supports dynamic provisioning of volumes using
StorageClasses (often abbreviated SC). The StorageClass is responsible for provision‐
ing (and deprovisioning) PersistentVolumes according to the needs of applications
running in the cluster, as shown in Figure 2-11.

Figure 2-11. StorageClasses support dynamic provisioning of volumes

Depending on the Kubernetes cluster you are using, at least one StorageClass is likely
already available. You can verify this using the command kubectl get sc. If you’re
running a simple Kubernetes distribution on your local machine and don’t see any

Kubernetes Resources for Data Storage | 39

StorageClasses, you can install an open source local storage provider from Rancher
with the following command:

set GH_LINK=https://raw.githubusercontent.com
kubectl apply -f \
 $GH_LINK/rancher/local-path-provisioner/master/deploy/local-path-storage.yaml

This storage provider comes preinstalled in K3s, a desktop distribution also provided
by Rancher. If you take a look at the YAML configuration referenced in that state‐
ment, you’ll see the following definition of a StorageClass. The source code is in this
book’s repository:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: local-path
provisioner: rancher.io/local-path
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Delete

As you can see from the definition, a StorageClass is defined by a few key attributes:

• The provisioner interfaces with an underlying storage provider such as a public•
cloud or storage system in order to allocate the actual storage. The provisioner
can be either one of the Kubernetes built-in provisioners (referred to as in-tree
because they are part of the Kubernetes source code), or a provisioner that
conforms to the Container Storage Interface (CSI), which we’ll examine later in
this chapter.

• The reclaimPolicy describes whether storage is reclaimed when the Persistent‐•
Volume is deleted. The default, Delete, can be overridden to Retain, in which
case the storage administrator would be responsible for managing the future state
of that storage with the storage provider.

• The volumeBindingMode controls when the storage is provisioned and bound.•
If the value is Immediate, a PersistentVolume is immediately provisioned as
soon as a PersistentVolumeClaim referencing the StorageClass is created, and
the claim is bound to the PersistentVolume, regardless of whether the claim is
referenced in a Pod. Many storage plug-ins also support a second mode known as
WaitForFirstConsumer, in which case no PersistentVolume is provisioned until
a Pod is created that references the claim. This behavior is considered preferable
since it gives the Kubernetes scheduler more flexibility.

• Although not shown in this example, there is also an optional allowVolumeEx•
pansion flag. This indicates whether the StorageClass supports the ability for
volumes to be expanded. If true, the volume can be expanded by increasing
the size of the storage.request field of the PersistentVolumeClaim. This value
defaults to false.

40 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/nTocI
https://oreil.ly/iFvrm

• Some StorageClasses also define parameters, specific configuration options for•
the storage provider that are passed to the provisioner. Common options include
filesystem type, encryption settings, and throughput in terms of I/O operations
per second (IOPS). Check the documentation for the storage provider for more
details.

Limits on Dynamic Provisioning

Local PVs cannot be dynamically provisioned by a StorageClass, so
you must create them manually yourself.

Application developers can reference a specific StorageClass when creating a PVC
by adding a storageClass property to the definition. For example, here is a YAML
configuration for a PVC referencing the local-path StorageClass. The source code is
in this book’s repository:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: my-local-path-claim
spec:
 storageClassName: local-path
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

If no storageClass is specified in the claim, the default StorageClass is used. The
default StorageClass can be set by the cluster administrator. As we showed in “Persis‐
tentVolumes” on page 33, you can opt out of using StorageClasses by using the empty
string, which indicates that you are using statically provisioned storage.

StorageClasses provide a useful abstraction that cluster administrators and applica‐
tion developers can use as a contract: administrators define the StorageClasses, and
developers reference the StorageClasses by name. The details of the underlying
StorageClass implementation can differ across Kubernetes platform providers, pro‐
moting portability of applications.

This flexibility allows administrators to create StorageClasses representing a variety
of storage options—for example, to distinguish between different quality-of-service
guarantees in terms of throughput or latency. This concept is known as profiles in
other storage systems. See “How Developers Are Driving the Future of Kubernetes
Storage” on page 47 for more ideas on how StorageClasses can be leveraged in
innovative ways.

Kubernetes Resources for Data Storage | 41

https://oreil.ly/Ixwv7

Kubernetes Storage Architecture
In the preceding sections, we discussed the various storage resources that Kubernetes
supports via its API. In the remainder of the chapter, we’ll look at how these solutions
are constructed, as they can give us valuable insights into constructing cloud native
data solutions.

Defining Cloud Native Storage

Most of the storage technologies we discuss in this chapter are
captured as part of the “cloud native storage” solutions listed in
the CNCF landscape. The CNCF Storage Whitepaper is a helpful
resource that defines key terms and concepts for cloud native stor‐
age. Both of these resources are updated regularly.

Flexvolume
Originally, the Kubernetes codebase contained multiple in-tree storage plug-ins (that
is, included in the same GitHub repo as the rest of the Kubernetes code). This helped
standardize the code for connecting to different storage platforms, but there were
a couple of disadvantages. First, many Kubernetes developers had limited expertise
across the broad set of included storage providers. More significantly, the ability to
upgrade storage plug-ins was tied to the Kubernetes release cycle, meaning that if you
needed a fix or enhancement for a storage plug-in, you’d have to wait until it was
accepted into a Kubernetes release. This slowed the maturation of storage technology
for Kubernetes and as a result, adoption slowed as well.

The Kubernetes community created the Flexvolume specification to allow develop‐
ment of plug-ins independently—that is, out of the Kubernetes source code tree and
thus not tied to the Kubernetes release cycle. Around the same time, storage plug-in
standards were emerging for other container orchestration systems, and developers
from these communities began to question the wisdom of developing multiple stand‐
ards to solve the same basic problem.

Future Flexvolume Support

The Flexvolume feature has been deprecated in Kubernetes 1.23 in
favor of the Container Storage Interface.

42 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/k1Ttm
https://oreil.ly/vY3wF
https://oreil.ly/bKRi9

Container Storage Interface
The Container Storage Interface (CSI) initiative was established as an industry stan‐
dard for storage for containerized applications. CSI is an open standard used to
define plug-ins that will work across container orchestration systems including
Kubernetes, Mesos, and Cloud Foundry. As Saad Ali, Google engineer and chair
of the Kubernetes Storage Special Interest Group (SIG), noted in “The State of State
in Kubernetes” in The New Stack, “The Container Storage Interface allows Kubernetes
to interact directly with an arbitrary storage system.”

The CSI specification is available on GitHub. Support for the CSI in Kubernetes
began with the 1.x release, and it went general availability (GA) in the 1.13 release.
Kubernetes continues to track updates to the CSI specification.

Additional CSI Resources

The CSI documentation site provides guidance for developers and
storage providers who are interested in developing CSI-compliant
drivers. The site also provides a very useful list of CSI-compliant
drivers. This list is generally more up-to-date than one provided on
the Kubernetes documentation site.

Once a CSI implementation is deployed on a Kubernetes cluster, its capabilities are
accessed through the standard Kubernetes storage resources such as PVCs, PVs, and
SCs. On the backend, each CSI implementation must provide two plug-ins: a node
plug-in and a controller plug-in, as depicted in Figure 2-12.

The CSI specification defines required interfaces for these plug-ins using gRPC but
does not specify exactly how the plug-ins are to be deployed. Let’s briefly look at the
role of each of these services:

The controller plug-in
This plug-in supports operations on volumes such as create, delete, listing, pub‐
lishing/unpublishing, tracking, and expanding volume capacity. It also tracks
volume status including what nodes each volume is attached to. The controller
plug-in is also responsible for taking and managing snapshots, and using snap‐
shots to clone a volume. The controller plug-in can run on any node—it is a
standard Kubernetes controller.

The node plug-in
This plug-in runs on each Kubernetes Worker Node where provisioned volumes
will be attached. The node plug-in is responsible for local storage, as well as
mounting and unmounting volumes onto the node. The Kubernetes control
plane directs the plug-in to mount a volume prior to any Pods being scheduled
on the node that require the volume.

Kubernetes Storage Architecture | 43

https://oreil.ly/JDsVv
https://oreil.ly/sUzfM
https://oreil.ly/sUzfM
https://oreil.ly/kCOhg
https://oreil.ly/AbUpe
https://oreil.ly/KFIXI
https://oreil.ly/wHkva
https://oreil.ly/wHkva

Figure 2-12. CSI mapped to Kubernetes

CSI Migration
The Kubernetes community has been very conscious of preserving forward and back‐
ward compatibility among versions, and the transition from in-tree storage plug-ins
to the CSI is no exception. Features in Kubernetes are typically introduced as alpha
features, and progress to beta, before being released as GA. Introducing a new API
such as the CSI presents a more complex challenge because it also involves the
deprecation of older APIs.

The CSI migration approach was introduced to promote a coherent experience for
users of storage plug-ins. The implementation of each corresponding in-tree plug-in
is changed to a facade when an equivalent CSI-compliant driver becomes available.
Calls on the in-tree plug-in are delegated to the underlying CSI-compliant driver. The
migration capability is itself a feature that can be enabled on a Kubernetes cluster.

This allows a staged adoption process that can be used as existing clusters are updated
to newer Kubernetes versions. Each application can be updated independently to
use CSI-compliant drivers instead of in-tree drivers. This approach to maturing and

44 | Chapter 2: Managing Data Storage on Kubernetes

https://oreil.ly/qduG8

replacing APIs is a helpful pattern for promoting stability of the overall platform and
providing administrators control over their migration to the new API.

Container Attached Storage
While the CSI is an important step forward in standardizing storage management
across container orchestrators, it does not provide implementation guidance on how
or where the storage software runs. Some CSI implementations are basically thin
wrappers around legacy storage management software running outside of the Kuber‐
netes cluster. While this reuse of existing storage assets certainly has its benefits,
many developers have expressed a desire for storage management solutions that run
entirely in Kubernetes alongside their applications.

Container Attached Storage is a design pattern that provides a more cloud native
approach to managing storage. The logic to manage storage operations such as
attaching volumes to applications is itself composed of microservices running in con‐
tainers. This allows the storage layer to have the same properties as other applications
deployed on Kubernetes and reduces the number of different management interfaces
administrators have to keep track of. The storage layer becomes just another Kuber‐
netes application.

As Evan Powell noted in “Container Attached Storage: A Primer” on the CNCF Blog:

Container Attached Storage reflects a broader trend of solutions that reinvent particu‐
lar categories or create new ones—by being built on Kubernetes and microservices and
that deliver capabilities to Kubernetes-based microservice environments. For example,
new projects for security, DNS, networking, network policy management, messaging,
tracing, logging and more have emerged in the cloud-native ecosystem.

Several examples of projects and products embody the CAS approach to storage. Let’s
examine a few of the open source options.

OpenEBS
OpenEBS is a project created by MayaData and donated to the CNCF, where it
became a Sandbox project in 2019. The name is a play on Amazon’s Elastic Block
Store, and OpenEBS is an attempt to provide an open source equivalent to this
popular managed service. OpenEBS provides storage engines for managing both local
and NVMe PersistentVolumes.

OpenEBS provides a great example of a CSI-compliant implementation deployed
onto Kubernetes, as shown in Figure 2-13. The control plane includes the OpenEBS
provisioner, which implements the CSI controller interface, and the OpenEBS API
server, which provides a configuration interface for clients and interacts with the rest
of the Kubernetes control plane.

Kubernetes Storage Architecture | 45

https://oreil.ly/zplhD

The OpenEBS data plane consists of the Node Disk Manager (NDM) as well as dedi‐
cated pods for each PersistentVolume. The NDM runs on each Kubernetes worker
where storage will be accessed. It implements the CSI node interface and provides
the helpful functionality of automatically detecting block storage devices attached to a
Worker Node.

Figure 2-13. OpenEBS architecture

OpenEBS creates multiple Pods for each volume. A controller Pod is created as the
primary replica, and additional replica Pods are created on other Kubernetes Worker
Nodes for high availability. Each Pod includes sidecars that expose interfaces for
metrics collection and management, which allows the control plane to monitor and
manage the data plane.

Longhorn
Longhorn is an open source, distributed block storage system for Kubernetes. It
was originally developed by Rancher and became a CNCF Sandbox project in 2019.
Longhorn focuses on providing an alternative to cloud-vendor storage and expensive
external storage arrays. Longhorn supports providing incremental backups to NFS
or S3-compatible storage, and live replication to a separate Kubernetes cluster for
disaster recovery.

Longhorn uses a similar architecture to that shown for OpenEBS; according to the
documentation, “Longhorn creates a dedicated storage controller for each block
device volume and synchronously replicates the volume across multiple replicas

46 | Chapter 2: Managing Data Storage on Kubernetes

https://longhorn.io
https://oreil.ly/TXTjG

stored on multiple nodes. The storage controller and replicas are themselves orch‐
estrated using Kubernetes.” Longhorn also provides an integrated user interface to
simplify operations.

Rook and Ceph
According to its website, “Rook is an open source cloud-native storage orchestrator,
providing the platform, framework, and support for a diverse set of storage solutions
to natively integrate with cloud-native environments.” Rook was originally created as
a containerized version of Ceph that could be deployed in Kubernetes. Ceph is an
open source distributed storage framework that provides block, file, and object stor‐
age. Rook was the first storage project accepted by the CNCF and is now considered a
CNCF graduated project.

Rook is a truly Kubernetes native implementation in the sense that it makes use of
Kubernetes custom resources (CRDs) and custom controllers called operators. Rook
provides operators for Ceph, Cassandra, and NFS. We’ll learn more about custom
resources and operators in Chapter 4.

Some commercial solutions for Kubernetes also embody the CAS pattern. These
include MayaData (creators of OpenEBS), Portworx by Pure Storage, Robin.io, and
StorageOS. These companies provide both raw storage in block and file formats, as
well as integrations for simplified deployments of additional data infrastructure such
as databases and streaming solutions.

Container Object Storage Interface
The CSI provides support for file and block storage, but object storage APIs require
different semantics and don’t quite fit the CSI paradigm of mounting volumes. In
Fall 2020, a group of companies led by MinIO began work on a new API for object
storage in container orchestration platforms: the Container Object Storage Interface
(COSI). COSI provides a Kubernetes API more suited to provisioning and accessing
object storage, defining a bucket custom resource, and including operations to create
buckets and manage access to buckets. The design of the COSI control plane and data
plane is modeled after the CSI. COSI is an emerging standard with a great start and
potential for wide adoption in the Kubernetes community and potentially beyond.

How Developers Are Driving the Future of Kubernetes Storage
With Kiran Mova, Cofounder and CTO of MayaData and member of the Kubernetes
Storage SIG

Many organizations are just starting their containerization journey. Kubernetes is the
shiny object, and everybody wants to run everything in Kubernetes. But not all teams
are ready for Kubernetes, much less managing stateful workloads on Kubernetes.

Kubernetes Storage Architecture | 47

https://ceph.io/en
https://oreil.ly/xmc1i
https://mayadata.io
https://portworx.com
https://oreil.ly/3rJuQ
https://robin.io
https://storageos.com
https://min.io
https://oreil.ly/BwcKA
https://oreil.ly/GRRuD

Application developers are the ones driving the push for stateful workloads on
Kubernetes. These developers get started with cloud resources that are available to
them, even a single-node Kubernetes cluster, and assume they’re ready to run that
in production. Developers are “Kuberneticizing” their in-house applications, and the
demands on storage are quite different from what the platform teams that support
them are used to.

Microservices and Kubernetes have changed the way storage volumes are provi‐
sioned. Platform teams are used to thinking about data in terms of provisioning
volumes with the required throughput or capacity. In the old way, the platform team
would meet with the application team, estimate the size of the data, do a month
of planning, provision a 2–3 TB volume, and mount it into the VMs or bare-metal
servers, and that would provide enough storage capacity for the next year.

With Kubernetes, provisioning has become ad hoc and much easier. You can run
things in a highly cost-effective and agile way by adopting Kubernetes. But many
platform teams are still working to catch up. Some teams are simply focused on
provisioning storage correctly, while others are beginning to focus on “day two”
operations, such as automated provisioning, expanding volumes, or disconnecting
and destroying volumes.

Platform teams don’t yet have a foolproof way to run stateful workloads in Kuber‐
netes, so they often offload persistence to public cloud providers. The public clouds
make a strong case for their managed services, claiming they have everything that
you’ll need to run a storage system, but once you start using managed services for
state, you can become dependent on those cloud providers and get stuck.

Meanwhile, innovations in storage technology are happening in parallel:

• The landscape is shifting back and forth between hyperconverged and disaggre‐•
gated. This rearchitecture is happening at all the layers of the stack, and it’s not
just the software: it includes processes and the people who consume the data.

• Hardware trends are driving toward low-latency solutions including NVMe and•
DPDK/SPDK, and changes to the Linux kernel like io_uring to take advantage of
faster hardware.

• Container Attached Storage will help us manage storage more effectively—for•
example, being able to reclaim storage space when workloads shrink. This can be
a difficult problem with data distributed across multiple nodes. We’ll need better
logic for relocating data onto existing nodes.

• Technologies that bring more automation for compliance and operations are•
coming into the picture as well.

With all these innovations, it can be a bit overwhelming to understand the big picture
and determine how to leverage this technology for maximum benefit. Platform SREs
need to learn about Kubernetes, declarative deployments, GitOps principles, new
volume types, and even database concepts like eventual consistency.

48 | Chapter 2: Managing Data Storage on Kubernetes

We envision a future in which application developers will specify their Kubernetes
storage needs in terms of the required quality of service, such as IOPS and through‐
put. Developers should be able to specify different storage needs for their workloads
in more human-relatable terms. For example, platform teams could define Storage‐
Classes for “fast storage” versus “slow storage,” or perhaps “metadata storage” versus
“data storage.” These StorageClasses will make different cost/performance trade-offs
and provide specific service level agreements (SLAs). We may even see some standard
definitions start to emerge for these new StorageClasses.

Ideally, application teams should not be choosing storage solutions. The only thing
an application developer should be concerned with is specifying PersistentVolume‐
Claims for their application, with the StorageClasses they need. The other details of
managing storage should be hidden, although of course the storage subsystem will
report errors including status and logs via the standard Kubernetes mechanisms. This
capability will make things a lot simpler for application developers, whether they’re
deploying a database or some other stateful workload.

These innovations will guide us to an optimal place with storage on Kubernetes.
Today, deploying infrastructure is easy. Let’s work together to get to a place where
deploying the right infrastructure is easy.

As you can see, storage on Kubernetes is an area comprising a lot of innovation,
including multiple open source projects and commercial vendors competing to pro‐
vide the most usable, cost-effective, and performant solutions. The cloud native
storage section of the CNCF landscape provides a helpful listing of storage providers
and related tools, including the technologies referenced in this chapter and many
more.

Summary
In this chapter, we’ve explored how persistence is managed in container systems like
Docker, and container orchestration systems like Kubernetes. You’ve learned about
the various Kubernetes resources that can be used to manage stateful workloads,
including Volumes, PersistentVolumes, PersistentVolumeClaims, and StorageClasses.
We’ve seen how the Container Storage Interface and Container Attached Storage
pattern point the way toward more cloud native approaches to managing storage.
Now you’re ready to learn how to use these building blocks and design principles to
manage stateful workloads including databases, streaming data, and more.

Summary | 49

https://oreil.ly/cm4Ms
https://oreil.ly/cm4Ms

CHAPTER 3

Databases on Kubernetes the Hard Way

As we discussed in Chapter 1, Kubernetes was designed for stateless workloads. A
corollary to this is that stateless workloads are what Kubernetes does best. Because
of this, some have argued that you shouldn’t try to run stateful workloads on
Kubernetes, and you may hear various recommendations about what you should
do instead: “Use a managed service,” or “Leave data in legacy databases in your
on-premises datacenter,” or perhaps even “Run your databases in the cloud, but in
traditional VMs instead of containers.”

While these recommendations are still viable options, one of our main goals in this
book is to demonstrate that running data infrastructure in Kubernetes has become
not only a viable option, but a preferred option. In his article “A Case for Databases
on Kubernetes from a Former Skeptic”, Christopher Bradford describes his journey
from being skeptical of running any stateful workload in Kubernetes, to grudging
acceptance of running data infrastructure on Kubernetes for development and test
workloads, to enthusiastic evangelism around deploying databases on Kubernetes
in production. This journey is typical of many in the Data on Kubernetes Commu‐
nity (DoKC). By the middle of 2020, Boris Kurktchiev was able to cite a growing
consensus that managing stateful workloads on Kubernetes had reached a point of
viability, and even maturity, in his article “3 Reasons to Bring Stateful Applications to
Kubernetes”.

How did this change come about? Over the past several years, the Kubernetes com‐
munity has shifted focus toward adding features that support the ability to manage
state in a cloud native way on Kubernetes. The storage elements represent a big
part of this shift we introduced in the previous chapter, including the Kubernetes
PersistentVolume subsystem and the adoption of the CSI. In this chapter, we’ll com‐
plete this part of the story by looking at Kubernetes resources for building stateful

51

https://oreil.ly/SjQV0
https://oreil.ly/SjQV0
https://oreil.ly/xtm89
https://oreil.ly/xtm89

applications on top of this storage foundation. We’ll focus in particular on a specific
type of stateful application: data infrastructure.

The Hard Way
The phrase “doing it the hard way” has come to be associated with avoiding the easy
option in favor of putting in the detailed work required to accomplish a result that
will have lasting significance. Throughout history, pioneers of all persuasions are well
known for taking pride in having made the sacrifice of blood, sweat, and tears that
made life just that little bit more bearable for the generations that follow. These elders
are often heard to lament when their protégés fail to comprehend the depth of what
they had to go through.

In the tech world, it’s no different. While new innovations such as APIs and “no code”
environments have massive potential to grow a new crop of developers worldwide,
a deeper understanding of the underlying technology is still required in order
to manage highly available and secure systems at worldwide scale. It’s when things
go wrong that this detailed knowledge proves its worth. This is why many of us
who are software developers and never touch a physical server in our day jobs gain
so much from building our own PC by wiring chips and boards by hand. It’s also
one of the hidden benefits of serving as informal IT consultants for our friends and
family.

For the Kubernetes community, of course, “the hard way” has an even more specific
connotation. Google engineer Kelsey Hightower’s “Kubernetes the Hard Way” has
become a sort of rite of passage for those who want a deeper understanding of the
elements that make up a Kubernetes cluster. This popular tutorial walks you through
downloading, installing, and configuring each of the components that make up the
Kubernetes control plane. The result is a working Kubernetes cluster that, although
not suitable for deploying a production workload, is certainly functional enough for
development and learning. The appeal of the approach is that all of the instructions
are typed by hand. Rather than downloading a bunch of scripts that do everything for
you, you must understand what is happening at each step.

In this chapter, we’ll emulate this approach and walk you through deploying some
example data infrastructure the hard way ourselves. Along the way, you’ll get more
hands-on experience with the storage resources you learned about in Chapter 2,
and we’ll introduce additional Kubernetes resource types for managing compute and
network to complete the compute, network, storage triad we introduced in Chapter 1.
Are you ready to get your hands dirty? Let’s go!

52 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/xd6ne

Examples Are Not Production-Grade

The examples we present in this chapter are primarily for introduc‐
ing new elements of the Kubernetes API and are not intended to
represent deployments we’d recommend running in production.
We’ll make sure to highlight any gaps so that we can demonstrate
how to fill them in upcoming chapters.

Prerequisites for Running Data Infrastructure
on Kubernetes
To follow along with the examples in this chapter, you’ll want to have a Kubernetes
cluster to work on. If you’ve never tried it before, perhaps you’ll want to build a clus‐
ter using the “Kubernetes the Hard Way” instructions, and then use that same cluster
to add data infrastructure the hard way as well. You could also use a simple desktop
Kubernetes, since we won’t be using a large amount of resources. If you’re using a
shared cluster, you might want to install these examples in their own Namespace to
isolate them from the work of others:

kubectl config set-context --current --namespace=<insert-namespace-name-here>

You’ll also need to make sure you have a StorageClass in your cluster. If you’re
starting from a cluster built the hard way, you won’t have one. You may want to follow
the instructions in “StorageClasses” on page 39 for installing a simple StorageClass
and provisioner that expose local storage. The source code is in this book’s repository:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: local-path
provisioner: rancher.io/local-path
volumeBindingMode: WaitForFirstConsumer
reclaimPolicy: Delete

You’ll want to use a StorageClass that supports a volumeBindingMode of WaitFor
FirstConsumer. This gives Kubernetes the flexibility to defer provisioning storage
until we need it. This behavior is generally preferred for production deployments, so
you might as well start getting in the habit.

Running MySQL on Kubernetes
First, let’s start with a super simple example. MySQL is one of the most widely used
relational databases because of its reliability and usability. For this example, we’ll
build on the MySQL tutorial in the official Kubernetes documentation, with a couple
of twists. You can find the source code used in this section at “Deploying MySQL
Example—Data on Kubernetes the Hard Way”. The tutorial includes two Kubernetes

Prerequisites for Running Data Infrastructure on Kubernetes | 53

https://oreil.ly/sLopS
https://oreil.ly/iV1Tg
https://oreil.ly/rpNyc
https://oreil.ly/cY6cv
https://oreil.ly/YfjiG
https://oreil.ly/YfjiG

deployments: one to run a MySQL Pod, and another to run a sample client—in this
case, WordPress. This configuration is shown in Figure 3-1.

Figure 3-1. Sample Kubernetes deployment of MySQL

In this example, we see that there is a PersistentVolumeClaim for each Pod. For the
purposes of this example, we’ll assume these claims are satisfied by a single volume
provided by the default StorageClass. You’ll also notice that each Pod is shown as part
of a ReplicaSet and that there is a service exposed for the MySQL database. Let’s take a
pause and introduce these concepts.

ReplicaSets
Production application deployments on Kubernetes do not typically deploy individ‐
ual Pods, because an individual Pod could easily be lost when the node disappears.
Instead, Pods are typically deployed in the context of a Kubernetes resource that
manages their lifecycle. ReplicaSet is one of these resources, and the other is Stateful‐
Set, which we’ll look at later in the chapter.

The purpose of a ReplicaSet is to ensure that a specified number of replicas of a given
Pod are kept running at any given time. As Pods are destroyed, others are created
to replace them in order to satisfy the desired number of replicas. A ReplicaSet is
defined by a Pod template, a number of replicas, and a selector. The Pod template
defines a specification for Pods that will be managed by the ReplicaSet, similar to
what we saw for individual Pods created in the examples in Chapter 2. The number
of replicas can be zero or more. The selector identifies Pods that are part of the
ReplicaSet.

54 | Chapter 3: Databases on Kubernetes the Hard Way

Let’s look at a portion of an example definition of a ReplicaSet for the WordPress
application shown in Figure 3-1:

apiVersion: apps/v1
kind: ReplicaSet
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 replicas: 1
 selector:
 matchLabels:
 app: wordpress
 tier: mysql
 template:
 metadata:
 labels:
 app: wordpress
 tier: mysql
 spec:
 containers:
 - image: mysql:8.0
 name: mysql
 ...

A ReplicaSet is responsible for creating or deleting Pods in order to meet the specified
number of replicas. You can scale the size of a ReplicaSet up or down by changing this
value. The Pod template is used when creating new Pods. Pods that are managed by a
ReplicaSet contain a reference to the ReplicaSet in their metadata.ownerReferences
field. A ReplicaSet can actually take responsibility for managing a Pod that it did not
create if the selector matches and the Pod does not reference another owner. This
behavior of a ReplicaSet is known as acquiring a Pod.

Define ReplicaSet Selectors Carefully

If you do create ReplicaSets directly, make sure that the selector
you use is unique and does not match any bare Pods that you do
not intend to be acquired. Pods that do not match the Pod template
could be acquired if the selectors match. For more information
about managing the lifecycle of ReplicaSets and the Pods they
manage, see the Kubernetes documentation.

Running MySQL on Kubernetes | 55

https://oreil.ly/8Bc9D

You might be wondering why we didn’t provide a full definition of a ReplicaSet. As
it turns out, most application developers do not end up using ReplicaSets directly,
because Kubernetes provides another resource type that manages ReplicaSets declara‐
tively: Deployments.

Deployments
A Kubernetes Deployment is a resource that builds on top of ReplicaSets with addi‐
tional features for lifecycle management, including the ability to roll out new versions
and roll back to previous versions. As shown in Figure 3-2, creating a Deployment
results in the creation of a ReplicaSet as well.

Figure 3-2. Deployments and ReplicaSets

This figure highlights that ReplicaSets (and therefore the Deployments that manage
them) operate on cloned replicas of Pods, meaning that the definitions of the Pods
are the same, even down to the level of PersistentVolumeClaims. The definition of a
ReplicaSet references a single PVC that is provided to it, and there is no mechanism
provided to clone the PVC definition for additional Pods. For this reason, Deploy‐
ments and ReplicaSets are not a good choice if your intent is for each Pod to have
access to its own dedicated storage.

Deployments are a good choice if your application Pods do not need access to
storage, or if your intent is that they access the same piece of storage. However, the
cases where this would be desirable are pretty rare, since you likely don’t want a
situation in which you could have multiple simultaneous writers to the same storage.

56 | Chapter 3: Databases on Kubernetes the Hard Way

Let’s create an example Deployment. First, create a Secret that will represent the
database password (substitute in whatever string you want for the password):

kubectl create secret generic mysql-root-password \
 --from-literal=password=<your password>

Next, create a PVC that represents the storage that the database can use. The source
code is in this book’s repository. A single PVC is sufficient in this case since you
are creating a single node. This should work as long as you have an appropriate
StorageClass, as referenced earlier:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: mysql-pv-claim
 labels:
 app: wordpress
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Next, create a Deployment with a Pod template spec that runs MySQL. The source
code is in this book’s repository. Note that it includes a reference to the PVC you just
created as well as the Secret containing the root password for the database:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress
 tier: mysql
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: wordpress
 tier: mysql
 spec:
 containers:
 - image: mysql:8.0
 name: mysql
 env:
 - name: MYSQL_ROOT_PASSWORD

Running MySQL on Kubernetes | 57

https://oreil.ly/CHccy
https://oreil.ly/CHccy
https://oreil.ly/v9TEt
https://oreil.ly/v9TEt

 valueFrom:
 secretKeyRef:
 name: mysql-root-password
 key: password
 ports:
 - containerPort: 3306
 name: mysql
 volumeMounts:
 - name: mysql-persistent-storage
 mountPath: /var/lib/mysql
 volumes:
 - name: mysql-persistent-storage
 persistentVolumeClaim:
 claimName: mysql-pv-claim

We have a few interesting things to note about this Deployment’s specification:

• The Deployment has a Recreate strategy. This refers to the way the Deployment•
handles the replacement of Pods when the Pod template is updated; we’ll discuss
this shortly.

• Under the Pod template, the password is passed to the Pod as an environment•
variable extracted from the Secret you created in this example. Overriding the
default password is an important aspect of securing any database deployment.

• A single port is exposed on the MySQL image for database access, since this is a•
relatively simple example. In other samples in this book, we’ll see cases of Pods
that expose additional ports for administrative operations, metrics collection, and
more. The fact that access is disabled by default is a great feature of Kubernetes.

• The MySQL image mounts a volume for its persistent storage using the PVC•
defined in this example.

• The number of replicas was not provided in the specification. This means that•
the default value of 1 will be used.

After applying the configuration, try using a command like kubectl get deploy
ments,rs,pods to see the items that Kubernetes created for you. You’ll notice a
single ReplicaSet named after the Deployment that includes a random string (for
example, wordpress-mysql-655c8d9c54). The Pod’s name references the name of
the ReplicaSet, adding some additional random characters (for example, wordpress-
mysql-655c8d9c54-tgswd). These names provide a quick way to identify the relation‐
ships between these resources.

Here are a few of the actions that a Deployment takes to manage the lifecycle of
ReplicaSets. In keeping with the Kubernetes emphasis on declarative operations, most
of these are triggered by updating the specification of the Deployment:

58 | Chapter 3: Databases on Kubernetes the Hard Way

Initial rollout
When you create a Deployment, Kubernetes uses the specification you provide to
create a ReplicaSet. The process of creating this ReplicaSet and its Pods is known
as a rollout. A rollout is also performed as part of a rolling update.

Scaling up or down
When you update a Deployment to change the number of replicas, the underly‐
ing ReplicaSet is scaled up or down accordingly.

Rolling update
When you update the Deployment’s Pod template (for example, by specifying
a different container image for the Pod), Kubernetes creates a new Replica‐
Set based on the new Pod template. The way that Kubernetes manages the
transition between the old and new ReplicaSets is described by the Deploy‐
ment’s spec.strategy property, which defaults to a value called RollingUpdate.
In a rolling update, the new ReplicaSet is slowly scaled up by creating Pods
conforming to the new template, as the number of Pods in the existing ReplicaSet
is scaled down. During this transition, the Deployment enforces a maximum and
minimum number of Pods, expressed as percentages, as set by the spec.strat
egy.rollingupdate.maxSurge and maxUnavailable properties. Each of these
values defaults to 25%.

Recreate update
The other option for use when you update the Pod template is Recreate. This
is the option that was set in the preceding Deployment. With this option, the
existing ReplicaSet is terminated immediately before the new ReplicaSet is cre‐
ated. This strategy is useful for development environments since it completes the
update more quickly, whereas RollingUpdate is more suitable for production
environments since it emphasizes high availability. This is also useful for data
migration.

Rollback update
When creating or updating a Deployment, you could introduce an error—for
example, by updating a container image in a Pod with a version that contains a
bug. In this case, the Pods managed by the Deployment might not even initialize
fully. You can detect these types of errors using commands such as kubectl
rollout status. Kubernetes provides a series of operations for managing the
history of rollouts of a Deployment. You can access these via kubectl commands
such as kubectl rollout history, which provides a numbered history of roll‐
outs for a Deployment, and kubectl rollout undo, which reverts a Deployment
to the previous rollout. You can also undo to a specific rollout version with
the --to-version option. Because kubectl supports rollouts for other resource
types we’ll cover later in this chapter (StatefulSets and DaemonSets), you’ll

Running MySQL on Kubernetes | 59

need to include the resource type and name when using these commands—for
example:

kubectl rollout history deployment/wordpress-mysql

This produces output such as the following:

deployment.apps/wordpress-mysql
REVISION CHANGE-CAUSE
1 <none>

As you can see, Kubernetes Deployments provide some sophisticated behaviors for
managing the lifecycle of a set of cloned Pods. You can test out these lifecycle
operations (other than rollback) by changing the Deployment’s YAML specification
and reapplying it. Try scaling the number of replicas to 2 and back again, or using
a different MySQL image. After updating the Deployment, you can use a command
like kubectl describe deployment wordpress-mysql to observe the events that
Kubernetes initiates to bring your Deployment to your desired state.

Other options are available for Deployments that we don’t have space to go into
here—for example, how to specify what Kubernetes does if you attempt an update
that fails. For a more in-depth explanation of the behavior of Deployments, see the
Kubernetes documentation.

Services
In the preceding steps, you’ve created a PVC to specify the storage needs of the
database, a Secret to provide administrator credentials, and a Deployment to manage
the lifecycle of a single MySQL Pod. Now that you have a running database, you’ll
want to make it accessible to applications. In our scheme of compute, network, and
storage that we introduced in Chapter 1, this is the networking part.

Kubernetes Services are the primitive that we need to use to expose access to our
database as a network service. A Service provides an abstraction for a group of Pods
running behind it. In the case of a single MySQL node as in this example, you might
wonder why we’d bother creating this abstraction. One key feature that a Service
supports is to provide a consistently named endpoint that doesn’t change. You don’t
want to be in a situation of having to update your clients whenever the database Pod
is restarted and gets a new IP address. You can create a Service for accessing MySQL
by using a YAML configuration like this. The source code is in this book’s repository:

apiVersion: v1
kind: Service
metadata:
 name: wordpress-mysql
 labels:
 app: wordpress
spec:

60 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/ibjpA
https://oreil.ly/FyR9E

 ports:
 - port: 3306
 selector:
 app: wordpress
 tier: mysql
 clusterIP: None

Here are a couple of things to note about this configuration:

• This configuration specifies a port that is exposed on the Service: 3306. In•
defining a Service, two ports are actually involved: the port exposed to clients of
the Service, and the targetPort exposed by the underlying Pods that the Service
is fronting. Since you haven’t specified a targetPort, it defaults to the port value.

• The selector defines what Pods the Service will direct traffic to. In this configu‐•
ration, there will be only a single MySQL Pod managed by the Deployment, and
that’s just fine.

• If you have worked with Kubernetes Services before, you may note that there is•
no serviceType defined for this Service, which means that it is of the default
type, known as ClusterIP. Furthermore, since the clusterIP property is set to
None, this is what is known as a headless Service—that is, the Service’s DNS name
is mapped directly to the IP addresses of the selected Pods.

Kubernetes supports several types of Services to address different use cases, which
are shown in Figure 3-3. We’ll introduce them briefly here in order to highlight their
applicability to data infrastructure:

ClusterIP Service
This type of Service is exposed on a cluster-internal IP address. ClusterIP Serv‐
ices are the type used most often for data infrastructure such as databases
in Kubernetes, especially headless services, since this infrastructure is typically
deployed in Kubernetes alongside the application that uses it.

NodePort Service
A NodePort Service is exposed externally to the cluster on the IP address of
each Worker Node. A ClusterIP service is also created internally, to which the
NodePort routes traffic. You can allow Kubernetes to select what external port
is used from a range of ports (30000–32767 by default), or specify the one you
desire by using the NodePort property. NodePort services are most suitable for
development environments, when you need to debug what is happening on a
specific instance of a data infrastructure application.

LoadBalancer
LoadBalancer Services represent a request from the Kubernetes runtime to
set up an external load balancer provided by the underlying cloud provider.
For example, on Amazon’s Elastic Kubernetes Service (EKS), requesting a

Running MySQL on Kubernetes | 61

LoadBalancer Service causes an instance of an Elastic Load Balancer (ELB) to
be created. Usage of LoadBalancers in front of multinode data infrastructure
deployments is typically not required, as these data technologies often have their
own approaches for distributing load. For example, Apache Cassandra drivers are
aware of the topology of a Cassandra cluster and provide load-balancing features
to client applications, eliminating the need for a load balancer.

ExternalName Service
An ExternalName Service is typically used to represent access to a Service that
is outside your cluster—for example, a database that is running externally to
Kubernetes. An ExternalName Service does not have a selector, as it is not
mapping to any Pods. Instead, it maps the Service name to a CNAME record. For
example, if you create a my-external-database Service with an externalName
of database.mydomain.com, references in your application Pods to my-external-
database will be mapped to database.mydomain.com.

Figure 3-3. Kubernetes Service types

Note also the inclusion of Ingress in the figure. While Kubernetes Ingress is not a type
of Service, it is related. An Ingress is used to provide access to Kubernetes services
from outside the cluster, typically via HTTP. Multiple Ingress implementations are
available, including Nginx, Traefik, Ambassador (based on Envoy) and others. Ingress
implementations typically provide features including Secure Sockets Layer (SSL)

62 | Chapter 3: Databases on Kubernetes the Hard Way

termination and load balancing, even across multiple Kubernetes Services. As with
LoadBalancer Services, Ingresses are more typically used at the application tier.

Accessing MySQL
Now that you have deployed the database, you’re ready to deploy an application that
uses it—the WordPress server. First, the server will need its own PVC. This helps
illustrate that some applications leverage storage directly—perhaps for storing files,
applications that use data infrastructure, and applications that do both. You can make
a small request since this is just for demonstration purposes. The source code is in
this book’s repository:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: wp-pv-claim
 labels:
 app: wordpress
spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

Next, create a Deployment for a single WordPress node. The source code is in this
book’s repository:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: wordpress
 labels:
 app: wordpress
spec:
 selector:
 matchLabels:
 app: wordpress
 tier: frontend
 strategy:
 type: Recreate
 template:
 metadata:
 labels:
 app: wordpress
 tier: frontend
 spec:
 containers:
 - image: wordpress:4.8-apache
 name: wordpress
 env:

Running MySQL on Kubernetes | 63

https://oreil.ly/smKtM
https://oreil.ly/hLPdW

 - name: WORDPRESS_DB_HOST
 value: wordpress-mysql
 - name: WORDPRESS_DB_PASSWORD
 valueFrom:
 secretKeyRef:
 name: mysql-root-password
 key: password
 ports:
 - containerPort: 80
 name: wordpress
 volumeMounts:
 - name: wordpress-persistent-storage
 mountPath: /var/www/html
 volumes:
 - name: wordpress-persistent-storage
 persistentVolumeClaim:
 claimName: wp-pv-claim

Notice that the database host and password for accessing MySQL are passed to
WordPress as environment variables. The value of the host is the name of the Service
you created for MySQL above. This is all that is needed for the database connection to
be routed to your MySQL instance. The value for the password is extracted from the
Secret, as with the preceding configuration of the MySQL Deployment.

You’ll also notice that WordPress exposes an HTTP interface at port 80, so let’s create
a service to expose the WordPress server. The source code is in this book’s repository:

apiVersion: v1
kind: Service
metadata:
 name: wordpress
 labels:
 app: wordpress
spec:
 ports:
 - port: 80
 selector:
 app: wordpress
 tier: frontend
 type: LoadBalancer

Note that the service is of type LoadBalancer, which should make it fairly simple to
access from your local machine. Execute the command kubectl get services to
get the LoadBalancer’s IP address; then you can open the WordPress instance in your
browser with the URL http://<ip>. Try logging in and creating some pages.

64 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/tEigE

Accessing Services from Kubernetes Distributions

The exact details of accessing Services will depend on the Kuber‐
netes distribution you’re using and whether you’re deploying apps
in production, or just testing something quickly as we’re doing
here. If you’re using a desktop Kubernetes distribution, you may
wish to use a NodePort Service instead of LoadBalancer for sim‐
plicity. You can also consult the documentation for instructions on
accessing services, such as those provided for minikube or k3d.

When you’re done experimenting with your WordPress instance, clean up the
resources specified in the configuration files you’ve used in the local directory using
the following command, including the data stored in your PersistentVolumeClaim:

kubectl delete -k ./

At this point, you might be feeling like this was relatively easy, despite our claim to be
doing things “the hard way.” And in a sense, you’d be right. So far, we’ve deployed a
single Node of a simple database with sane defaults that we didn’t have to spend much
time configuring. Creating a single Node is, of course, fine if your application is going
to store only a small amount of data. Is that all there is to deploying databases on
Kubernetes? Of course not! Now that we’ve introduced a few of the basic Kubernetes
resources via this simple database deployment, it’s time to step up the complexity a
bit. Let’s get down to business!

Running Apache Cassandra on Kubernetes
In this section, we’ll look at running a multinode database on Kubernetes using
Apache Cassandra. Cassandra is a NoSQL database first developed at Facebook
that became a top-level project of the Apache Software Foundation (ASF) in 2010.
Cassandra is an operational database that provides a tabular data model, and its
Cassandra Query Language (CQL) is similar to SQL.

Cassandra is a database designed for the cloud, as it scales horizontally by adding
nodes, where each node is a peer. This decentralized design has been proven to
have near-linear scalability. Cassandra supports high availability by storing multiple
copies of data or replicas, including logic to distribute those replicas across multiple
Datacenters and cloud regions. Cassandra is built on similar principles to Kubernetes
in that it is designed to detect failures and continue operating while the system can
recover to its intended state in the background. All of these features make Cassandra
an excellent fit for deploying on Kubernetes.

Running Apache Cassandra on Kubernetes | 65

https://oreil.ly/euQLB
https://k3d.io

To discuss how this deployment works, it’s helpful to understand Cassandra’s
approach to distributing data from two perspectives: physical and logical. Borrowing
some of the visuals from Cassandra: The Definitive Guide by Jeff Carpenter and Eben
Hewitt (O’Reilly), you can see these perspectives in Figure 3-4. From a physical
perspective, Cassandra nodes (not to be confused with Kubernetes Worker Nodes)
are organized using racks and Datacenters. While the terms betray Cassandra’s origin
during a time when on-premise datacenters were the dominant way software was
deployed in the mid-2000s, they can be flexibly applied. In cloud deployments, racks
often represent an availability zone, while Datacenters represent a cloud region.
However these are represented, the important part is that they represent physically
separate failure domains. Cassandra uses awareness of this topology to make sure that
it stores replicas in multiple physical locations to maximize the availability of data in
the event of failures, whether those failures are a single machine, a rack of servers, an
availability zone, or an entire region.

Figure 3-4. Physical and logical views of Cassandra’s distributed architecture

The logical view helps us understand how Cassandra determines what data will be
placed on each node. Each row of data in Cassandra is identified by a primary key,
which consists of one or more partition-key columns used to allocate data across
nodes, as well as optional clustering columns, which can be used to organize multiple
rows of data within a partition for efficient access. Each write in Cassandra (and
most reads) references a specific partition by providing the partition-key values,

66 | Chapter 3: Databases on Kubernetes the Hard Way

https://learning.oreilly.com/library/view/cassandra-the-definitive/9781492097136

which Cassandra hashes together to produce a token, which is a value between −263

and 263−1. Cassandra assigns each of its nodes responsibility for one or more token
ranges (shown as a single range per node labeled with letters A–H in Figure 3-4 for
simplicity). The physical topology is taken into account in the assignment of token
ranges in order to ensure that copies of your data are distributed across racks and
datacenters.

Now we’re ready to consider how Cassandra maps onto Kubernetes. It’s important to
consider two implications of Cassandra’s architecture:

Statefulness
Each Cassandra node has state that it is responsible for maintaining. Cassandra
has mechanisms for replacing a node by streaming data from other replicas to a
new node, which means that a configuration in which nodes use local ephemeral
storage is possible, at the cost of longer startup time. However, it’s more common
to configure each Cassandra node to use persistent storage. In either case, each
Cassandra node needs to have its own unique PersistentVolumeClaim.

Identity
Although each Cassandra node is the same in terms of its code, configuration,
and functionality in a fully peer-to-peer architecture, the nodes are different in
terms of their actual role. Each node has an identity in terms of where it fits in
the topology of Datacenters and racks, and its assigned token ranges.

These requirements for identity and an association with a specific PersistentVolume‐
Claim present some challenges for Deployments and ReplicaSets that they weren’t
designed to handle. Starting early in Kubernetes’ existence, there was an awareness
that another mechanism was needed to manage stateful workloads like Cassandra.

StatefulSets
Kubernetes began providing a resource to manage stateful workloads with the alpha
release of PetSets in the 1.3 release. This capability has matured over time and is
now known as StatefulSets (see “Are Your Stateful Workloads Pets or Cattle?” on
page 69). A StatefulSet has some similarities to a ReplicaSet in that it is responsible
for managing the lifecycle of a set of Pods, but the way in which it goes about
this management has some significant differences. To address the needs of stateful
applications, like those of Cassandra that we’ve listed, StatefulSets demonstrate the
following key properties:

Stable identity for Pods
First, StatefulSets provide a stable name and network identity for Pods. Each
Pod is assigned a name based on the name of the StatefulSet, plus an ordinal
number. For example, a StatefulSet called cassandra would have Pods named
cassandra-0, cassandra-1, cassandra-2, and so on, as shown in Figure 3-5.

Running Apache Cassandra on Kubernetes | 67

These are stable names, so if a Pod is lost and needs replacing, the replacement
will have the same name, even if it’s started on a different Worker Node. A
Pod’s name is set as its hostname, so if you create a headless service, you can
actually address individual Pods as needed—for example: cassandra-1.cqlser
vice.default.svc.cluster.local. The figure also includes a seed service,
which we’ll discuss in “Accessing Cassandra” on page 78.

Figure 3-5. Sample Deployment of Cassandra on Kubernetes with StatefulSets

Ordered lifecycle management
StatefulSets provide predictable behaviors for managing the lifecycle of Pods.
When scaling up the number of Pods in a StatefulSet, new Pods are added
according to the next available number, unlike ReplicaSets, where Pod name
suffixes are based on universally unique identifiers (UUIDs). For example,
expanding the StatefulSet in Figure 3-5 would cause the creation of Pods such
as cassandra-4 and cassandra-5. Scaling down has the reverse behavior, as
the Pods with the highest ordinal numbers are deleted first. This predictability
simplifies management—for example, by making it obvious which Nodes should
be backed up before reducing cluster size.

Persistent disks
Unlike ReplicaSets, which create a single PersistentVolumeClaim shared across
all their Pods, StatefulSets create a PVC associated with each Pod. If a Pod in
a StatefulSet is replaced, the replacement is bound to the PVC that has the
state it is replacing. Replacement could occur because of a Pod failing or the
scheduler choosing to run a Pod on another node in order to balance the load.
For a database like Cassandra, this enables quick recovery when a Cassandra

68 | Chapter 3: Databases on Kubernetes the Hard Way

node is lost, as the replacement node can recover its state immediately from
the associated PersistentVolume rather than needing data streamed from other
replicas.

Managing Data Replication

When planning your application deployment, make sure you con‐
sider whether data is being replicated at the data tier or the storage
tier. A distributed database like Cassandra manages replication
itself, storing copies of your data on multiple nodes according to
the replication factor you request, typically three per Cassandra
Datacenter. The storage provider you select may also offer replica‐
tion. If the Kubernetes volume for each Cassandra Pod has three
replicas, you could end up storing nine copies of your data. While
this certainly promotes high data survivability, this might cost
more than you intend.

Are Your Stateful Workloads Pets or Cattle?
PetSet might seem like an odd name for a Kubernetes resource, and it has since
been replaced, but it provides interesting insights into the thought process of the
Kubernetes community in supporting stateful workloads. The name PetSets is a
reference to a discussion that has been active in the DevOps world since at least 2012.
The original concept has been attributed to Bill Baker, formerly of Microsoft.

The basic idea is that there are two ways of handling servers: to treat them as pets
that require care, feeding, and nurture, or to treat them as cattle, to which you don’t
develop an attachment or provide a lot of individual attention. If you’re logging into a
server regularly to perform maintenance activities, you’re treating it as a pet.

The implication is that the life of an operations engineer can be greatly improved
by being able to treat more elements as cattle than as pets. With the move to
modern cloud native architectures, this concept has extended from servers to VMs
and containers, and even to individual microservices. We now design systems to
avoid single points of failure so they can survive the loss of individual components.
Architectural approaches for high availability have made technologies like Kubernetes
and Cassandra successful.

As you can see, naming a Kubernetes resource PetSets carried a lot of weight and
perhaps even a bit of skepticism to running stateful workloads on Kubernetes at all. In
the end, PetSets helped take the care and feeding out of managing state on Kubernetes
but the name change to StatefulSets was appropriate. Taken together, capabilities like
StatefulSets, the PersistentVolume subsystem introduced in Chapter 2, and operators
(coming in Chapter 4) are bringing a level of automation that promises a day in the
near future when we will manage data on Kubernetes like cattle.

Running Apache Cassandra on Kubernetes | 69

Defining StatefulSets
Now that you’ve learned a bit about StatefulSets, let’s examine how they can be used
to run Cassandra. You’ll configure a simple three-node cluster the “hard way” using a
Kubernetes StatefulSet to represent a single Cassandra datacenter containing a single
rack. The source code used in this section is located in the book’s repository. This
approximates the configuration shown in Figure 3-5.

To set up a Cassandra cluster in Kubernetes, you’ll first need a headless service. This
service represents the CQL Service shown in Figure 3-5, providing an endpoint that
clients can use to obtain addresses of all the Cassandra nodes in the StatefulSet. The
source code is in this book’s repository:

apiVersion: v1
kind: Service
metadata:
 labels:
 app: cassandra
 name: cassandra
spec:
 clusterIP: None
 ports:
 - port: 9042
 selector:
 app: cassandra

You’ll reference this service in the definition of a StatefulSet which will manage your
Cassandra nodes. The source code is located in this book’s repository. Rather than
applying this configuration immediately, you may want to wait until after we do some
quick explanations. The configuration looks like this:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: cassandra
 labels:
 app: cassandra
spec:
 serviceName: cassandra
 replicas: 3
 podManagementPolicy: OrderedReady
 updateStrategy:
 type: RollingUpdate
 selector:
 matchLabels:
 app: cassandra
 template:
 metadata:
 labels:
 app: cassandra
 spec:

70 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/yhg3w
https://oreil.ly/7nXxZ
https://oreil.ly/0r6Cr

 containers:
 - name: cassandra
 image: cassandra
 ports:
 - containerPort: 7000
 name: intra-node
 - containerPort: 7001
 name: tls-intra-node
 - containerPort: 7199
 name: jmx
 - containerPort: 9042
 name: cql
 lifecycle:
 preStop:
 exec:
 command:
 - /bin/sh
 - -c
 - nodetool drain
 env:
 - name: CASSANDRA_CLUSTER_NAME
 value: "cluster1"
 - name: CASSANDRA_DC
 value: "dc1"
 - name: CASSANDRA_RACK
 value: "rack1"
 - name: CASSANDRA_SEEDS
 value: "cassandra-0.cassandra.default.svc.cluster.local"
 volumeMounts:
 - name: cassandra-data
 mountPath: /var/lib/cassandra
 volumeClaimTemplates:
 - metadata:
 name: cassandra-data
 spec:
 accessModes: ["ReadWriteOnce"]
 storageClassName: standard
 resources:
 requests:
 storage: 1Gi

This is the most complex configuration we’ve looked at together so far, so let’s
simplify it by looking at one portion at a time:

StatefulSet metadata
We’ve named and labeled this StatefulSet cassandra, and that same string will be
used as the selector for Pods belonging to the StatefulSet.

Exposing StatefulSet Pods via a Service
The spec of the StatefulSet starts with a reference to the headless service you
created. While serviceName is not a required field according to the Kubernetes

Running Apache Cassandra on Kubernetes | 71

specification, some Kubernetes distributions and tools such as Helm expect it to
be populated and will generate warnings or errors if you fail to provide a value.

Number of replicas
The replicas field identifies the number of Pods that should be available in this
StatefulSet. The value provided (3) reflects the smallest Cassandra cluster that
one might see in an actual production deployment, and most deployments are
significantly larger, which is when Cassandra’s ability to deliver high performance
and availability at scale really begin to shine through.

Lifecycle management options
The podManagementPolicy and updateStrategy describe how Kubernetes
should manage the rollout of Pods when the cluster is scaling up or down, and
how updates to the Pods in the StatefulSet should be managed, respectively. We’ll
examine the significance of these values in “StatefulSet lifecycle management” on
page 74.

Pod specification
The next section of the StatefulSet specification is the template used to create
each Pod that is managed by the StatefulSet. The template has several subsec‐
tions. First, under metadata, each Pod includes a label cassandra that identifies
it as being part of the set.

This template includes a single item in the containers field, a specification for
a Cassandra container. The image field selects the latest version of the official
Cassandra Docker image, which at the time of writing is Cassandra 4.0. This is
where we diverge with the Kubernetes StatefulSet tutorial referenced previously,
which uses a custom Cassandra 3.11 image created specifically for that tutorial.
Because the image we’ve chosen to use here is an official Docker image, you do
not need to include registry or account information to reference it, and the name
cassandra by itself is sufficient to identify the image that will be used.

Each Pod will expose ports for various interfaces: a cql port for client use,
intra-node and tls-intra-node ports for communication between nodes in the
Cassandra cluster, and a jmx port for management via the Java Management
Extensions (JMX).

The Pod specification also includes instructions that help Kubernetes manage
Pod lifecycles, including a livenessProbe and a preStop command. You’ll learn
how each of these are used next.

According to its documentation, the image we’re using has been constructed
to provide two ways to customize Cassandra’s configuration, which is stored
in the cassandra.yaml file within the image. One way is to override the entire
contents of the cassandra.yaml with a file that you provide. The second is to

72 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/arYaE
https://oreil.ly/WuTZo

use environment variables that the image exposes to override a subset of Cassan‐
dra configuration options that are used most frequently. Setting these values in
the env field causes the corresponding settings in the cassandra.yaml file to be
updated:

CASSANDRA_CLUSTER_NAME

This setting is used to distinguish which nodes belong to a cluster. Should
a Cassandra node come into contact with nodes that don’t match its cluster
name, it will ignore them.

CASSANDRA_DC and CASSANDRA_RACK
These settings identify the Datacenter and rack that each node will be a
part of. This serves to highlight one interesting wrinkle in the way that
StatefulSets expose a Pod specification. Since the template is applied to each
Pod and container, there is no way to vary the configured Datacenter and
rack names between Cassandra Pods. For this reason, it is typical to deploy
Cassandra on Kubernetes using a StatefulSet per rack.

CASSANDRA_SEEDS

These define well-known locations of nodes in a Cassandra cluster that new
nodes can use to bootstrap themselves into the cluster. The best practice
is to specify multiple seeds in case one of them happens to be down or
offline when a new node is joining. However, for this initial example, it’s
enough to specify the initial Cassandra replica as a seed via the DNS name
cassandra-0.cassandra.default.svc.cluster.local. We’ll look at a more
robust way of specifying seeds in Chapter 4 using a service, as implied by the
Seed service shown in Figure 3-5.

The last item in the container specification is a volumeMount which requesting
that a PersistentVolume be mounted at the /var/lib/cassandra directory, which is
where the Cassandra image is configured to store its datafiles. Since each Pod will
need its own PersistentVolumeClaim, the name cassandra-data is a reference to
a PersistentVolumeClaim template, which is defined next.

volumeClaimTemplates
The final piece of the StatefulSet specification is the volumeClaimTemplates.
The specification must include a template definition for each name referenced
in one of the preceding container specifications. In this case, the cassandra-
data template references the standard StorageClass we’ve been using in these
examples. Kubernetes will use this template to create a PersistentVolumeClaim of
the requested size of 1 GB whenever it spins up a new Pod within this StatefulSet.

Running Apache Cassandra on Kubernetes | 73

StatefulSet lifecycle management
Now that we’ve had a chance to discuss the components of a StatefulSet specification,
you can go ahead and apply the source:

kubectl apply -f cassandra-statefulset.yaml

As this gets applied, you can execute the following to watch as the StatefulSet spins up
Cassandra Pods:

kubectl get pods -w

Let’s describe some of the behavior you can observe from the output of this com‐
mand. First, you’ll see a single Pod, cassandra-0. Once that Pod has progressed
to Ready status, you’ll see the cassandra-1 Pod, followed by cassandra-2 after
cassandra-1 is ready. This behavior is specified by the selection of podManagementPo
licy for the StatefulSet. Let’s explore the available options and some of the other
settings that help define how Pods in a StatefulSet are managed:

Pod management policies
The podManagementPolicy determines the timing for adding or removing Pods
from a StatefulSet. The OrderedReady policy applied in our Cassandra example is
the default. When this policy is in place and Pods are added, whether on initial
creation or scaling up, Kubernetes expands the StatefulSet one Pod at a time. As
each Pod is added, Kubernetes waits until the Pod reports a status of Ready before
adding subsequent Pods. If the Pod specification contains a readinessProbe,
Kubernetes executes the provided command iteratively to determine when the
Pod is ready to receive traffic. When the probe completes successfully (i.e., with a
zero return code), it moves on to creating the next Pod. For Cassandra, readiness
is typically measured by the availability of the CQL port (9042), which means the
node is able to respond to CQL queries.

Similarly, when a StatefulSet is removed or scaled down, Pods are removed one
at a time. As a Pod is being removed, any provided preStop commands for
its containers are executed to give them a chance to shut down gracefully. In
our current example, the nodetool drain command is executed to help the
Cassandra node exit the cluster cleanly, assigning responsibilities for its token
range(s) to other nodes. as Kubernetes waits until a Pod has been completely
terminated before removing the next Pod. The command specified in the liven
essProbe is used to determine when the Pod is alive, and when it no longer
completes without error, Kubernetes can proceed to removing the next Pod. See
the Kubernetes documentation for more information on configuring readiness
and liveness probes.

74 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/SsIuO

The other Pod management policy is Parallel. When this policy is in effect,
Kubernetes launches or terminates multiple Pods at the same time in order to
scale up or down. This has the effect of bringing your StatefulSet to the desired
number of replicas more quickly, but it may also result in some stateful work‐
loads taking longer to stabilize. For example, a database like Cassandra shuffles
data between nodes when the cluster size changes in order to balance the load,
and will tend to stabilize more quickly when nodes are added or removed one at
a time.

With either policy, Kubernetes manages Pods according to the ordinal numbers,
always adding Pods with the next unused ordinal numbers when scaling up, and
deleting the Pods with the highest ordinal numbers when scaling down.

Update strategies
The updateStrategy describes how Pods in the StatefulSet will be updated if a
change is made in the Pod template specification, such as changing a container
image. The default strategy is RollingUpdate, as selected in this example. With
the other option, OnDelete, you must manually delete Pods in order for the new
Pod template to be applied.

In a rolling update, Kubernetes will delete and re-create each Pod in the Stateful‐
Set, starting with the Pod with the largest ordinal number and working toward
the smallest. Pods are updated one at a time, and you can specify a number of
Pods, called a partition, in order to perform a phased rollout or canary. Note that
if you discover a bad Pod configuration during a rollout, you’ll need to update
the Pod template specification to a known good state and then manually delete
any Pods that were created using the bad specification. Since these Pods will not
ever reach a Ready state, Kubernetes will not decide they are ready to replace with
the good configuration.

Note that Kubernetes offers similar lifecycle management options for Deployments,
ReplicaSets, and DaemonSets, including revision history.

We recommend getting more hands-on experience with managing StatefulSets in
order to reinforce your knowledge. For example, you can monitor the creation of
PersistentVolumeClaims as a StatefulSet scales up. Another thing to try: delete a
StatefulSet and re-create it, verifying that the new Pods recover previously stored data
from the original StatefulSet. For more ideas, you may find these guided tutorials
helpful: “StatefulSet Basics” from the Kubernetes documentation, and “StatefulSet:
Run and Scale Stateful Applications Easily in Kubernetes” from the Kubernetes blog.

Running Apache Cassandra on Kubernetes | 75

https://oreil.ly/dOovM
https://oreil.ly/TyJj2
https://oreil.ly/TyJj2

More Sophisticated Lifecycle Management for StatefulSets

One interesting set of opinions on additional lifecycle options for
StatefulSets comes from OpenKruise, a CNCF Sandbox project,
which provides an Advanced StatefulSet. The Advanced StatefulSet
adds capabilities including these:

• Parallel updates with a maximum number of unavailable Pods•
• Rolling updates with an alternate order for replacement, based•

on a provided prioritization policy
• Updating Pods “in place” by restarting their containers accord‐•

ing to an updated Pod template specification

This Kubernetes resource is also named StatefulSet to facil‐
itate its use with minimal impact to your existing configura‐
tions. You just need to change the apiVersion: from apps/v1 to
apps.kruise.io/v1beta1.

StatefulSets are extremely useful for managing stateful workloads on Kubernetes, and
that’s not even counting some capabilities we didn’t address, such as affinity and
anti-affinity, managing resource requests for memory and CPU, and availability con‐
straints such as PodDisruptionBudgets (PDBs). On the other hand, you might desire
capabilities that StatefulSets don’t provide, such as backup/restore of PersistentVo‐
lumes, or secure provisioning of access credentials. We’ll discuss how to leverage or
build these capabilities on top of Kubernetes in Chapter 4 and beyond.

StatefulSets: Past, Present, and Future
With Maciej Szulik, Red Hat Engineer and Kubernetes SIG Apps member

The Kubernetes Special Interest Group for Applications (SIG Apps) is responsible
for development of the controllers that help manage application workloads on
Kubernetes. This includes batch workloads like Jobs and CronJobs, other stateless
workloads like Deployments and ReplicaSets, and of course StatefulSets for stateful
workloads.

The StatefulSet controller has a slightly different way of working from the other
controllers. When you’re thinking about Deployments, or Jobs, the controller just has
to manage Pods. You don’t have to worry about the underlying data, either because
that’s handled by PersistenVolumes or you’re OK with just throwing each Pod’s data
away when you destroy and re-create it. But that behavior is not acceptable when
you’re trying to run a database, or any kind of workload that requires the state
to be persisted between runs. This results in significant additional complexity in
the StatefulSet controller. The main challenge in writing and maturing Kubernetes
controllers has been handling edge cases. StatefulSets are similar in this regard, but it’s

76 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/xEqYf
https://oreil.ly/uec9G

even more urgent for StatefulSets to handle the failure cases correctly, so that we don’t
lose data.

We’ve encountered some interesting use cases for StatefulSets, and some users would
like to change boundaries that have been set in the core implementation. For example,
we’ve had pull requests submitted to change the way StatefulSets handle Pods during
an update. In the original implementation, the StatefulSet controllers update Pods one
at a time, and if something breaks during the rollout, the entire rollout is paused, and
the StatefulSet requires manual intervention to make sure that data is not corrupted
or lost. Some users would like the StatefulSet controller to ignore issues where a Pod
is stuck in a pending state or cannot run, and just restart these Pods. However, the
thing to remember with StatefulSets is that protecting the underlying data is the most
important priority. We could end up making the suggested change in order to allow
faster updates in parallel for development environments where data protection is less
of a concern, but require opting in with a feature flag.

Another frequently requested feature is the ability to auto-delete the PersistentVolu‐
meClaims of a StatefulSet when the StatefulSet is deleted. The original behavior
is to preserve the PVCs, again as a data protection mechanism, but a Kubernetes
Enhancement Proposal (KEP) for auto-deletion was included as an alpha feature for
the Kubernetes 1.23 release.

Even though some significant differences exist in the way StatefulSets manage Pods
versus other controllers, we are working to make the behaviors more similar across
the controllers as much as possible. One example is the addition of a minReadySec
onds setting in the Pod template, which allows you to say, “I’d like this application to
be unavailable for a little bit of extra time before sending traffic to it.” This is helpful
for some stateful workloads that need a bit more time to initialize themselves (e.g., to
warm up caches) and brings StatefulSets in line with other controllers.

Another example is the work that is in progress to unify status reporting across all
of the application controllers. Currently, if you’re building any kind of higher-level
orchestration or management tools, you need to have different behavior to handle the
status of StatefulSets, Deployments, DaemonSets, and so on, because each was written
by a different author. Each author had a different requirement for what should be in
the status, how the resource should express information about whether it’s available,
or whether it’s in a rolling update, or it’s unavailable, or whatever is happening with it.
DaemonSets are especially different in how they report status.

Another feature in progress allows you to set a maxUnavailable number of Pods for
a StatefulSet. This number would be applied during the initial rollout of a StatefulSet
and allow the number of replicas to be scaled up more quickly. This is another feature
that brings StatefulSets into greater alignment with the way the other controllers
work. The best way to understand the work that is in progress from the SIG Apps
team, is to look at Kubernetes open issues that are labeled sig/apps.

Running Apache Cassandra on Kubernetes | 77

https://oreil.ly/XO0fv
https://oreil.ly/6Qwsz
https://oreil.ly/6Qwsz
https://oreil.ly/44jlT
https://oreil.ly/Mmlp2

It can be difficult to build StatefulSets as a capability that will meet the needs of all
stateful workloads; we’ve tried to build them in such a way as to consistently handle
the most common requirements. We could obviously add support for more and more
edge cases, but this tends to make the functionality significantly more complicated
for users to grasp. There will always be users who are dissatisfied because their use
case is not covered, and there’s always a balance of how much we can put in without
affecting both functionality and performance.

In most cases where users need more specific behaviors (for example, to handle edge
cases), it’s because they’re trying to manage a complex application like Postgres or
Cassandra. That’s where there’s a great argument for creating your own controllers
and even operators to deal with those specific cases. Even though it might sound
super scary, it’s really not that difficult to write your own controller. You can start
reasonably quickly and get a basic controller up and running in a couple of days
by using simple examples including the sample controller, which is part of the
Kubernetes codebase and maintained by the project. Programming Kubernetes by
Michael Hausenblas and Stefan Schimanski (O’Reilly), also has a chapter on writing
controllers. Don’t assume you’re stuck with the behavior that comes out of the box.
Kubernetes is meant to be open and extensible; whether it’s networking, controllers,
CSI, plug-ins, or something else you need to customize Kubernetes, you should go for
it!

Accessing Cassandra
Once you have applied the configurations we’ve listed, you can use Cassandra’s CQL
shell cqlsh to execute CQL commands. If you happen to be a Cassandra user and
have a copy of cqlsh installed on your local machine, you could access Cassandra
as a client application would, using the CQL Service associated with the StatefulSet.
However, since each Cassandra node contains cqlsh as well, this gives us a chance
to demonstrate a different way to interact with infrastructure in Kubernetes, by
connecting directly to an individual Pod in a StatefulSet:

kubectl exec -it cassandra-0 -- cqlsh

This should bring up the cqlsh prompt, and you can then explore the contents
of Cassandra’s built-in tables using DESCRIBE KEYSPACES and then USE to select a
particular keyspace and run DESCRIBE TABLES. Many Cassandra tutorials available
online can guide you through more examples of creating your own tables, inserting
and querying data, and more. When you’re done experimenting with cqlsh, you can
type exit to exit the shell.

Removing a StatefulSet is the same as any other Kubernetes resource—you can delete
it by name, for example:

kubectl delete sts cassandra

78 | Chapter 3: Databases on Kubernetes the Hard Way

https://oreil.ly/NB8wk
https://oreil.ly/Ad4Ga

You could also delete the StatefulSet referencing the file used to create it:

kubectl delete -f cassandra-statefulset.yaml

When you delete a StatefulSet with a policy of Retain as in this example, the Persis‐
tentVolumeClaims it creates are not deleted. If you re-create the StatefulSet, it will
bind to the same PVCs and reuse the existing data. When you no longer need the
claims, you’ll need to delete them manually. The final cleanup from this exercise
you’ll want to perform is to delete the CQL Service:

kubectl delete service cassandra

What About DaemonSets?
If you’re familiar with the resources Kubernetes offers for managing workloads, you
may have noticed that we haven’t yet mentioned DaemonSets. These allow you to
request that a Pod be run on each Worker Node in a Kubernetes cluster, as shown in
Figure 3-6.

Figure 3-6. DaemonSets run a single Pod on selected Worker Nodes

Instead of specifying a number of replicas, a DaemonSet scales up or down as Worker
Nodes are added or removed from the cluster. By default, a DaemonSet will run your
Pod on each Worker Node, but you can use taints and tolerations to override this

Running Apache Cassandra on Kubernetes | 79

https://oreil.ly/487vb
https://oreil.ly/kLM6t

behavior (for example, limiting some Worker Nodes). DaemonSets support rolling
updates in a similar way to StatefulSets.

On the surface, DaemonSets might sound useful for running databases or other
data infrastructure, but this does not seem to be a widespread practice. Instead,
DaemonSets are most frequently used for functionality related to Worker Nodes and
their relationship to the underlying Kubernetes provider. For example, many of the
CSI implementations that we saw in Chapter 2 use DaemonSets to run a storage
driver on each Worker Node. Another common usage is to run Pods that perform
monitoring tasks on Worker Nodes, such as log and metrics collectors.

Summary
In this chapter, you’ve learned how to deploy both single-node and multinode dis‐
tributed databases on Kubernetes with hands-on examples. Along the way, you’ve
gained familiarity with Kubernetes resources such as Deployments, ReplicaSets, State‐
fulSets, and DaemonSets, and learned about the best use cases for each:

• Use Deployments/ReplicaSets to manage stateless workloads or simple stateful•
workloads like single-node databases or caches that can rely on ephemeral
storage.

• Use StatefulSets to manage stateful workloads that involve multiple nodes and•
require association with specific storage locations.

• Use DaemonSets to manage workloads that leverage specific Worker Node•
functionality.

You’ve also learned the limits of what each of these resources can provide. Now
that you’ve gained experience in deploying stateful workloads on Kubernetes, the
next step is to learn how to automate the so-called “day two” operations involved in
keeping this data infrastructure running.

80 | Chapter 3: Databases on Kubernetes the Hard Way

CHAPTER 4

Automating Database Deployment
on Kubernetes with Helm

In the previous chapter, you learned how to deploy both single-node and multinode
databases on Kubernetes by hand, creating one element at a time. We did things the
“hard way” on purpose to help maximize your understanding of using Kubernetes
primitives to set up the compute, network, and storage resources that a database
requires. Of course, this doesn’t represent the experience of running databases in
production on Kubernetes, for a couple of reasons.

First, teams typically don’t deploy databases by hand, one YAML file at a time. That
can get pretty tedious. And even combining the configurations into a single file could
start to get pretty complicated, especially for more sophisticated deployments. Con‐
sider the increase in the amount of configuration required in Chapter 3 for Cassandra
as a multinode database compared with the single-node MySQL deployment. This
won’t scale for large enterprises.

Second, while deploying a database is great, what about keeping it running over time?
You need your data infrastructure to remain reliable and performant over the long
haul, and data infrastructure is known for requiring a lot of care and feeding. Put
another way, the task of running a system is often divided into “day one” (the joyous
day when you deploy an application to production) and “day two” (every day after the
first, when you need to operate and evolve your application while maintaining high
availability).

These considerations around database deployment and operations mirror the larger
industry trends toward DevOps, an approach in which development teams take a
more active role in supporting applications in production. DevOps practices include
the use of automation tools for CI/CD of applications, shortening the amount of time
it takes for code to get from a developer’s desktop into production.

81

In this chapter, we’ll look at tools that help standardize the deployment of databases
and other applications. These tools take an infrastructure as code (IaC) approach,
allowing you to represent software installation and configuration options in a format
that can be executed automatically, reducing the overall amount of configuration
code you have to write. We’ll also emphasize data infrastructure operations in these
next two chapters and carry that theme throughout the remainder of the book.

Deploying Applications with Helm Charts
Let’s start by taking a look at a tool that helps you manage the complexity of manag‐
ing configurations: Helm. This package manager for Kubernetes is open source and
a CNCF graduated project. The concept of a package manager is a common one
across multiple programming languages, such as pip for Python, the Node Package
Manager (NPM) for JavaScript, and Ruby’s Gems feature. Package managers for
specific operating systems also exist, such as Apt for Linux, or Homebrew for macOS.
As shown in Figure 4-1, the essential elements of a package manager system are
the packages, the registries where the packages are stored, and the package manager
application (or client), which helps the chart developers register charts and allows
chart users to locate, install, and update packages on their local systems.

Figure 4-1. Helm, a package manager for Kubernetes

Helm extends the package management concept to Kubernetes, with some interesting
differences. If you’ve worked with one of the package managers listed previously,
you’ll be familiar with the idea that a package consists of a binary (executable code) as
well as metadata describing the binary, such as its functionality, API, and installation
instructions. In Helm, the packages are called charts. Charts describe how to build a
Kubernetes application piece by piece by using the Kubernetes resources for compute,
networking, and storage introduced in previous chapters, such as Pods, Services, and
PersistentVolumeClaims. For compute workloads, the descriptions point to container
images that reside in public or private container registries.

82 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

https://helm.sh
https://oreil.ly/cDjD3

Helm allows charts to reference other charts as dependencies, which provides a great
way to compose applications by creating assemblies of charts. For example, you could
define an application such as the WordPress/MySQL example from the previous
chapter by defining a chart for your WordPress deployment that referenced a chart
defining a MySQL deployment that you wish to reuse. Or, you might even find a
Helm chart that defines an entire WordPress application including the database.

Kubernetes Environment Prerequisites

The examples in this chapter assume you have access to a Kuber‐
netes cluster with a couple of characteristics:

• The cluster should have at least three Worker Nodes, in order•
to demonstrate mechanisms Kubernetes provides to allow you
to request Pods to be spread across a cluster. You can create
a simple cluster on your desktop by using an open source
distribution called kind. See the kind quick start guide for
instructions on installing kind and creating a multinode clus‐
ter. The code for this example also contains a configuration
file you may find useful to create a simple three-node kind
cluster.

• You will also need a StorageClass that supports dynamic pro‐•
visioning. You may wish to follow the instructions in “Storage‐
Classes” on page 39 for installing a simple StorageClass and
provisioner that expose local storage.

Using Helm to Deploy MySQL
To make things a bit more concrete, let’s use Helm to deploy the databases you
worked with in Chapter 3. First, if it’s not already on your system, you’ll need to
install Helm by using the documentation on the Helm website. Next, add the Bitnami
Helm repository:

helm repo add bitnami https://charts.bitnami.com/bitnami

The Bitnami Helm repository contains a variety of Helm charts to help you deploy
infrastructure such as databases, analytics engines, and log management systems,
as well as applications including ecommerce, customer relationship management
(CRM), and you guessed it: WordPress. You can find the source code for the charts
in the Bitnami Charts repository on GitHub. The README for this repo provides
helpful instructions for using the charts in various Kubernetes distributions.

Using Helm to Deploy MySQL | 83

https://oreil.ly/8nOHi
https://oreil.ly/8nOHi
https://oreil.ly/tUPWL
https://oreil.ly/lmcml

Now, let’s use the Helm chart provided in the bitnami repository to deploy MySQL.
In Helm’s terminology, each deployment is known as a release. The simplest possible
release that you could create using this chart would look something like this:

don’t execute me yet!
helm install mysql bitnami/mysql

If you execute this command, it will create a release called mysql using the Bitnami
MySQL Helm chart with its default settings. As a result, you’d have a single MySQL
node. Since you’ve already deployed a single node of MySQL manually in Chapter 3,
let’s do something a bit more interesting this time and create a MySQL cluster. To do
this, you’ll create a values.yaml file with contents like the following, or you can reuse
the sample provided in the source code:

architecture: replication
secondary:
 replicaCount: 2

The settings in this values.yaml file let Helm know that you want to use options in the
Bitnami MySQL Helm chart to deploy MySQL in a replicated architecture in which
there is a primary node and two secondary nodes.

MySQL Helm Chart Configuration Options

If you examine the default values.yaml file provided with the Bit‐
nami MySQL Helm chart, you’ll see quite a few options available
beyond the simple selections shown here. The configurable values
include the following:

• Images to pull and their locations•
• The Kubernetes StorageClass that will be used to generate•

PersistentVolumes
• Security credentials for user and administrator accounts•
• MySQL configuration settings for primary and secondary•

replicas
• Number of secondary replicas to create•
• Details of liveness, readiness probes•
• Affinity and anti-affinity settings•
• Managing high availability of the database using Pod disrup‐•

tion budgets

Many of these concepts you’ll be familiar with already, and others
like affinity and Pod disruption budgets are covered later in the
book.

84 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

https://oreil.ly/tsnuT
https://oreil.ly/SGsN5

Once you’ve created the values.yaml file, you can start the cluster using this
command:

helm install mysql bitnami/mysql -f values.yaml

After running the command, you’ll see the status of the install from Helm, plus
instructions that are provided with the chart under NOTES:

NAME: mysql
LAST DEPLOYED: Thu Oct 21 20:39:19 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
TEST SUITE: None
NOTES:
…

We’ve omitted the notes here since they are a bit lengthy. They describe suggested
commands for monitoring the status as MySQL initializes, how clients and adminis‐
trators can connect to the database, how to upgrade the database, and more.

Use Namespaces to Help Isolate Resources

Since we did not specify a Namespace, the Helm release has been
installed in the default Kubernetes Namespace unless you’ve sepa‐
rately configured a Namespace in your kubeconfig. If you want to
install a Helm release in its own Namespace in order to work with
its resources more effectively, you could run something like the
following:

helm install mysql bitnami/mysql \
 --namespace mysql --create-namespace

This creates a Namespace called mysql and installs the mysql
release inside it.

To obtain information about the Helm releases you’ve created, use the helm list
command, which produces output such as this (formatted for readability):

helm list
NAME NAMESPACE REVISION UPDATED
mysql default 1 2021-10-21 20:39:19

STATUS CHART APP VERSION
deployed mysql-8.8.8 8.0.26

If you haven’t installed the release in its own Namespace, it’s still simple to see the
compute resources that Helm has created on your behalf by running kubectl get
all, because they have all been labeled with the name of your release. It may take
several minutes for all the resources to initialize, but when complete, it will look
something like this:

Using Helm to Deploy MySQL | 85

https://oreil.ly/C2vOM

kubectl get all
NAME READY STATUS RESTARTS AGE
pod/mysql-primary-0 1/1 Running 0 3h40m
pod/mysql-secondary-0 1/1 Running 0 3h40m
pod/mysql-secondary-1 1/1 Running 0 3h38m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT
service/mysql-primary ClusterIP 10.96.107.156 <none> ...
service/mysql-primary-headless ClusterIP None <none> ...
service/mysql-secondary ClusterIP 10.96.250.52 <none> ...
service/mysql-secondary-headless ClusterIP None <none> ...

NAME READY AGE
statefulset.apps/mysql-primary 1/1 3h40m
statefulset.apps/mysql-secondary 2/2 3h40m

As you can see, Helm has created two StatefulSets, one for primary replicas and one
for secondary replicas. The mysql-primary StatefulSet is managing a single MySQL
Pod containing a primary replica, while the mysql-secondary StatefulSet is managing
two MySQL Pods containing secondary replicas. See if you can determine which
Kubernetes Worker Node each MySQL replica is running on by using the kubectl
describe pod command.

From the preceding output, you’ll also notice two Services created for each Stateful‐
Set, one a headless service and another that has a dedicated IP address. Since kubectl
get all tells you about only compute resources and services, you might also be
wondering about the storage resources. To check on these, run the kubectl get
pv command. Assuming you have a StorageClass installed that supports dynamic
provisioning, you should see PersistentVolumes that are bound to PersistentVolume‐
Claims named data-mysql-primary-0, data-mysql-secondary-0, and data-mysql-
secondary-1.

In addition to the resources we’ve discussed, installing the chart has also resulted in
the creation of a few additional resources that we’ll explore next.

Namespaces and Kubernetes Resource Scope

If you have chosen to install your Helm release in a Namespace,
you’ll need to specify the Namespace on most of your kubectl get
commands in order to see the created resources. The exception is
kubectl get pv, because PersistentVolumes are one of the Kuber‐
netes resources that are not Namespaced; that is, they can be used
by Pods in any Namespace. To learn more about which Kubernetes
resources in your cluster are Namespaced and which are not, run
the command kubectl api-resources.

86 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

How Helm Works
Did you wonder what happened when you executed the helm install command
with a provided values file? To understand what’s going on, let’s take a look at the
contents of a Helm chart, as shown in Figure 4-2. As we discuss these contents, it will
also be helpful to look at the source code of the MySQL Helm chart you just installed.

Figure 4-2. Customizing a Helm release using a values.yaml file

Looking at the contents of a Helm chart, you’ll notice the following:

README file
This explains how to use the chart. These instructions are provided along with
the chart in registries.

Chart.yaml file
This contains metadata about the chart such as its name, publisher, version,
keywords, and any dependencies on other charts. These properties are useful
when searching Helm registries to find charts.

values.yaml file
This lists out the configurable values supported by the chart and their default
values. These files typically contain a good number of comments that explain
the available options. For the Bitnami MySQL Helm chart, a lot of options are
available, as we’ve noted.

Using Helm to Deploy MySQL | 87

https://oreil.ly/xQbvb
https://oreil.ly/i7XBa
https://oreil.ly/zZb2Y
https://oreil.ly/mhfhZ

templates directory
This contains Go templates that define the chart. The templates include a
Notes.txt file used to generate the output you saw previously after executing the
helm install command, and one or more YAML files that describe a pattern
for a Kubernetes resource. These YAML files may be organized in subdirectories
(for example, the template that defines a StatefulSet for MySQL primary repli‐
cas). Finally, a _helpers.tpl file describes how to use the templates. Some of the
templates may be used multiple times or not at all, depending on the selected
configuration values.

When you execute the helm install command, the Helm client makes sure it has
an up-to-date copy of the chart you’ve named by checking with the source repository.
Then it uses the template to generate YAML configuration code, overriding default
values from the chart’s values.yaml file with any values you’ve provided. It then
uses the kubectl command to apply this configuration to your currently configured
Kubernetes cluster.

If you’d like to see the configuration that a Helm chart will produce before applying
it, you can use the handy template command. It supports the same syntax as the
install command:

helm template mysql bitnami/mysql -f values.yaml

Running this command will produce quite a bit of output, so you may want to
redirect it to a file (append > values-template.yaml to the command) so you can
take a longer look. Alternatively, you can look at the copy we have saved in the source
code repository.

You’ll notice that several types of resources are created, as summarized in Figure 4-3.
Many of the resources shown have been discussed, including the StatefulSets for
managing the primary and secondary replicas, each with its own service (the chart
also creates headless services that are not shown in the figure). Each Pod has its own
PersistentVolumeClaim that is mapped to a unique PersistentVolume.

Figure 4-3 also includes resource types we haven’t discussed previously. Notice first
that each StatefulSet has an associated ConfigMap that is used to provide a common
set of configuration settings to its Pods. Next, notice the Secret named mysql, which
stores passwords needed for accessing various interfaces exposed by the database
nodes. Finally, a ServiceAccount resource is applied to every Pod created by this
Helm release.

Let’s focus on some interesting aspects of this deployment, including the usage of
labels, ServiceAccounts, Secrets, and ConfigMaps.

88 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

https://oreil.ly/F21Lg
https://oreil.ly/diTnu
https://oreil.ly/v0aky
https://oreil.ly/iKedl
https://oreil.ly/DhEtc

Figure 4-3. Deploying MySQL using the Bitnami Helm chart

Labels
If you look through the output from the helm template, you’ll notice that the
resources have a common set of labels:

 labels:
 app.kubernetes.io/name: mysql
 helm.sh/chart: mysql-8.8.8
 app.kubernetes.io/instance: mysql
 app.kubernetes.io/managed-by: Helm

These labels help identify the resources as being part of the mysql application and
indicate that they are managed by Helm using a specific chart version. The labels
are useful for selecting resources, which is often useful in defining configurations for
other resources.

Using Helm to Deploy MySQL | 89

ServiceAccounts
Kubernetes clusters make a distinction between human users and applications for
access control purposes. A ServiceAccount is a Kubernetes resource that represents
an application and what it is allowed to access. For example, a ServiceAccount may be
given access to some portions of the Kubernetes API, or access to one or more secrets
containing privileged information such as login credentials. This latter capability is
used in your Helm installation of MySQL to share credentials between Pods.

Every Pod created in Kubernetes has a ServiceAccount assigned to it. If you do not
specify one, the default ServiceAccount is used. Installing the MySQL Helm chart
creates a ServiceAccount called mysql. You can see the specification for this resource
in the generated template:

apiVersion: v1
kind: ServiceAccount
metadata:
 name: mysql
 namespace: default
 labels: ...
 annotations:
secrets:
 - name: mysql

As you can see, this ServiceAccount has access to a Secret called mysql, which we’ll
discuss shortly. A ServiceAccount can also have an additional type of Secret known as
an imagePullSecret. These Secrets are used when an application needs to use images
from a private registry.

By default, a ServiceAccount does not have any access to the Kubernetes API. To
give this ServiceAccount the access it needs, the MySQL Helm chart creates a Role
specifying the Kubernetes resources and operations, and a RoleBinding to associate
the ServiceAccount to the Role. We’ll discuss ServiceAccounts and role-based access
in Chapter 5.

Secrets
As you learned in Chapter 2, a Secret provides secure access to information you need
to keep private. Your mysql Helm release contains a Secret called mysql containing
login credentials for the MySQL instances themselves:

apiVersion: v1
kind: Secret
metadata:
 name: mysql
 namespace: default
 labels: ...
type: Opaque
data:

90 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

 mysql-root-password: "VzhyNEhIcmdTTQ=="
 mysql-password: "R2ZtNkFHNDhpOQ=="
 mysql-replication-password: "bDBiTWVzVmVORA=="

The three passwords represent different types of access: the mysql-root-password
provides administrative access to the MySQL node, while the mysql-replication-
password is used for nodes to communicate for the purposes of data replication
between nodes. The mysql-password is used by client applications to access the
database to write and read data.

ConfigMaps
The Bitnami MySQL Helm chart creates Kubernetes ConfigMap resources to repre‐
sent the configuration settings used for Pods that run the MySQL primary and
secondary replica nodes. ConfigMaps store configuration data as key-value pairs. For
example, the ConfigMap created by the Helm chart for the primary replicas looks like
this:

apiVersion: v1
kind: ConfigMap
metadata:
 name: mysql-primary
 namespace: default
 labels: ...
data:
 my.cnf: |-

 [mysqld]
 default_authentication_plugin=mysql_native_password
 ...

In this case, the key is the name my.cnf, which represents a filename, and the value is
a multiline set of configuration settings that represent the contents of a configuration
file (which we’ve abbreviated here). Next, look at the definition of the StatefulSet
for the primary replicas. Notice that the contents of the ConfigMap are mounted
as a read-only file inside each template, according to the Pod specification for the
StatefulSet (again, we’ve omitted some detail to focus on key areas):

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: mysql-primary
 namespace: default
 labels: ...
spec:
 replicas: 1
 selector:
 matchLabels: ...
 serviceName: mysql-primary
 template:

Using Helm to Deploy MySQL | 91

 metadata:
 annotations: ...
 labels: ...
 spec:
 ...
 serviceAccountName: mysql
 containers:
 - name: mysql
 image: docker.io/bitnami/mysql:8.0.26-debian-10-r60
 volumeMounts:
 - name: data
 mountPath: /bitnami/mysql
 - name: config
 mountPath: /opt/bitnami/mysql/conf/my.cnf
 subPath: my.cnf
 volumes:
 - name: config
 configMap:
 name: mysql-primary

Mounting the ConfigMap as a volume in a container results in the creation of a
read-only file in the mount directory that is named according to the key and has the
value as its content. For our example, mounting the ConfigMap in the Pod’s mysql
container results in the creation of the file /opt/bitnami/mysql/conf/my.cnf.

This is one of several ways that ConfigMaps can be used in Kubernetes applications:

• As described in the Kubernetes documentation, you could choose to store con‐•
figuration data in more granular key-value pairs, which also makes it easier to
access individual values in your application.

• You can also reference individual key-value pairs as environment variables you•
pass to a container.

• Finally, applications can access ConfigMap contents via the Kubernetes API.•

More Configuration Options

Now that you have a Helm release with a working MySQL cluster,
you can point an application to it, such as WordPress. Why not try
seeing if you can adapt the WordPress deployment from Chapter 3
to point to the MySQL cluster you’ve created here?
For further learning, you could also compare your resulting config‐
uration with that produced by the Bitnami WordPress Helm chart,
which uses MariaDB instead of MySQL but is otherwise quite
similar.

92 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

https://oreil.ly/yoEYv

Updating Helm Charts
If you’re running a Helm release in a production environment, chances are you’re
going to need to maintain it over time. You might want to update a Helm release for
various reasons:

• A new version of a chart is available.•
• A new version of an image used by your application is available.•
• You want to change the selected options.•

To check for a new version of a chart, execute the helm repo update command. Run‐
ning this command with no options looks for updates in all of the chart repositories
you have configured for your Helm client:

helm repo update
Hang tight while we grab the latest from your chart repositories...
...Successfully got an update from the "bitnami" chart repository
Update Complete. ⎈Happy Helming!⎈

Next, you’ll want to make any desired updates to your configured values. If you’re
upgrading to a new version of a chart, make sure to check the release notes and
documentation of the configurable values. It’s a good idea to test out an upgrade
before applying it. The --dry-run option allows you to do this, producing similar
values to the helm template command:

helm upgrade mysql bitnami/mysql -f values.yaml --dry-run

Using an Overlay Configuration File

One useful option you could use for the upgrade is to specify
values you wish to override in a new configuration file, and apply
both the new and old, something like this:

helm upgrade mysql bitnami/mysql \
 -f values.yaml -f new-values.yaml

Configuration files are applied in the order they appear on the
command line, so if you use this approach, make sure your over‐
ridden values file appears after your original values file.

Once you’ve applied the upgrade, Helm sets about its work, updating only those
resources in the release that are affected by your configuration changes. If you’ve
specified changes to the Pod template for a StatefulSet, the Pods will be restarted
according to the update policy specified for the StatefulSet, as we discussed in “State‐
fulSet lifecycle management” on page 74.

Using Helm to Deploy MySQL | 93

Uninstalling Helm Charts
When you are finished using your Helm release, you can uninstall it by name:

helm uninstall mysql

Note that Helm does not remove any of the PersistentVolumeClaims or PersistentVo‐
lumes that were created for this Helm chart, following the behavior of StatefulSets
discussed in Chapter 3.

Additional Deployment Tools: Kustomize and Skaffold
In addition to Helm, other tools in the Kubernetes ecosystem are available to help you
manage the configuration and deployment of applications, such as Kustomize and
Skaffold.

Kustomize is a configuration management tool for Kubernetes. Unlike a package
manager, Kustomize does not provide a registry; instead, its focus is helping you
manage Kubernetes configuration YAML files for different environments. Kustomize
uses a template-based approach in which you create snippets of configuration code
called overlays that are intended to override sections of a base YAML file. These
overlays are typically intended for different environments such as development, test,
and production, or for isolating configurations specific to different Kubernetes pro‐
viders, with a similar effect to a Helm values.yaml file. The sections to be overridden
are identified by selectors such as Kubernetes labels or annotations. You provide
a kustomization.yaml file to describe the mapping of templates to their selectors.
Kustomize works best when the YAML file you want to customize is well structured
and uses labels or annotations.

Skaffold is a tool that automates application deployment in your development envi‐
ronment. You can execute Skaffold imperatively from the command line, or as a dae‐
mon that watches for code changes to build artifacts such as container images. When
it detects a relevant change, the daemon automatically performs actions according
to the workflow you define in a skaffold.yaml file. The workflow can include actions
such as building and tagging images, updating Helm charts or regular Kubernetes
configuration files, and deploying your app using kubectl, Helm, or Kustomize.

Using Helm to Deploy Apache Cassandra
Now let’s switch gears and look at deploying Apache Cassandra by using Helm. In
this section, you’ll use another chart provided by Bitnami, so there’s no need to add
another repository. You can find the implementation of this chart on GitHub. Helm
provides a quick way to see the metadata about this chart:

helm show chart bitnami/cassandra

94 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

https://oreil.ly/WzvXp

After reviewing the metadata, you’ll also want to learn about the configurable values.
You can examine the values.yaml file in the GitHub repo, or use another option on
the show command:

helm show values bitnami/cassandra

The list of options for this chart is shorter than the list for the MySQL chart, because
Cassandra doesn’t have the concept of primary and secondary replicas. However,
you’ll certainly see similar options for images, StorageClasses, security, liveness and
readiness probes, and so on. Some configuration options are unique to Cassandra,
such as those having to do with JVM settings and seed nodes (as discussed in
Chapter 3).

One interesting feature of this chart is the ability to export metrics from Cassandra
nodes. If you set metrics.enabled=true, the chart will inject a sidecar container into
each Cassandra Pod that exposes a port that can be scraped by Prometheus. Other
values under metrics configure what metrics are exported, the collection frequency,
and more. While we won’t use this feature here, metrics reporting is a key part of
managing data infrastructure we’ll cover in Chapter 6.

For a simple three-node Cassandra configuration, you could set the replica count to 3
and set other configuration values to their defaults. However, since you’re overriding
only a single configuration value, this is a good time to take advantage of Helm’s
support for setting values on the command line, instead of providing a values.yaml
file:

helm install cassandra bitnami/cassandra --set replicaCount=3

As discussed previously, you can use the helm template command to check the
configuration before installing it, or look at the file we’ve saved on GitHub. However,
since you’ve already created the release, you can also use this command:

helm get manifest cassandra

Looking through the resources in the YAML, you’ll see that a similar set of infrastruc‐
ture has been established, as shown in Figure 4-4.

The configuration includes the following:

• A ServiceAccount referencing a Secret, which contains the password for the•
cassandra administrator account.

• A single StatefulSet, with a headless Service used to reference its Pods. The•
Pods are spread evenly across the available Kubernetes Worker Nodes, which
we’ll discuss in the next section. The Service exposes Cassandra ports used for
intra-node communication (7000, with 7001 used for secure communication via
TLS), administration via JMX (7199), and client access via CQL (9042).

Using Helm to Deploy Apache Cassandra | 95

https://oreil.ly/z69Z7

Figure 4-4. Deploying Apache Cassandra using the Bitnami Helm chart

This configuration represents a simple Cassandra topology, with all three nodes in
a single Datacenter and rack. This simple topology reflects one of the limitations of
this chart—it does not provide the ability to create a Cassandra cluster consisting of
multiple Datacenters and racks. To create a more complex deployment, you’d have to
install multiple Helm releases, using the same clusterName (in this case, you’re using
the default name cassandra), but a different Datacenter and rack per deployment.
You’d also need to obtain the IP address of a couple of nodes in the first Datacenter to
use as additionalSeeds when configuring the releases for the other racks.

Affinity and Anti-Affinity
As shown in Figure 4-4, the Cassandra nodes are spread evenly across the Worker
Nodes in your cluster. To verify this in your own Cassandra release, you could run
something like the following:

96 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

kubectl describe pods | grep "^Name:" -A 3
Name: cassandra-0
Namespace: default
Priority: 0
Node: kind-worker/172.20.0.7
--
Name: cassandra-1
Namespace: default
Priority: 0
Node: kind-worker2/172.20.0.6
--
Name: cassandra-2
Namespace: default
Priority: 0
Node: kind-worker3/172.20.0.5

As you can see, each Cassandra node is running on a different Worker Node. If your
Kubernetes cluster has at least three Worker Nodes and no other workloads, you’ll
likely observe similar behavior. While it is true that this even allocation could happen
naturally in a cluster that has an even load across Worker Nodes, this is probably not
the case in your production environment. However, to promote maximum availabil‐
ity of your data, we want to try to honor the intent of Cassandra’s architecture to run
nodes on different machines in order to promote high availability.

To help guarantee this isolation, the Bitnami Helm chart uses Kubernetes’s affinity
capabilities, specifically anti-affinity. If you examine the generated configuration for
the Cassandra StatefulSet, you’ll see the following:

apiVersion: apps/v1
kind: StatefulSet
metadata:
 name: cassandra
 namespace: default
 labels: ...
spec:
 ...
 template:
 metadata:
 labels: ...
 spec:
 ...
 affinity:
 podAffinity:

 podAntiAffinity:
 preferredDuringSchedulingIgnoredDuringExecution:
 - podAffinityTerm:
 labelSelector:
 matchLabels:
 app.kubernetes.io/name: cassandra
 app.kubernetes.io/instance: cassandra

Using Helm to Deploy Apache Cassandra | 97

 namespaces:
 - "default"
 topologyKey: kubernetes.io/hostname
 weight: 1
 nodeAffinity:

As shown here, the Pod template specification lists three possible types of affinity,
with only the podAntiAffinity being defined. What do these concepts mean?

Pod affinity
The preference that a Pod is scheduled onto a node where another specific Pod is
running. For example, Pod affinity could be used to colocate a web server with its
cache.

Pod anti-affinity
The opposite of Pod affinity—that is, a preference that a Pod not be scheduled
on a node where another identified Pod is running. This is the constraint used in
this example, as we’ll discuss shortly.

Node affinity
A preference that a Pod be run on a node with specific characteristics.

Each type of affinity can be expressed as either hard or soft constraints. These
are known as requiredDuringSchedulingIgnoredDuringExecution and preferred
DuringSchedulingIgnoredDuringExecution. The first constraint specifies rules that
must be met before a Pod is scheduled on a node, while the second specifies a
preference that the scheduler will attempt to meet but may relax if necessary in order
to schedule the Pod.

IgnoredDuringExcecution implies that the constraints apply only when the Pods are
first scheduled. In the future, new RequiredDuringExecution options will be added
called requiredDuringSchedulingRequiredDuringExecution and requiredDuring
SchedulingRequiredDuringExecution. These will ask Kubernetes to evict Pods (that
is, move them to another node) that no longer meet the criteria—for example, by a
change in their labels.

Looking at the preceding example, the Pod template specification for the Cassandra
StatefulSet specifies an anti-affinity rule using the labels that are applied to each
Cassandra Pod. The net effect is that Kubernetes will try to spread the Pods across the
available Worker Nodes.

Those are the highlights of looking at the Bitnami Helm chart for Cassandra. To clean
things up, uninstall the Cassandra release:

helm uninstall cassandra

98 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

If you don’t want to work with Bitnami Helm charts any longer, you can also remove
the repository from your Helm client:

helm repo remove bitnami

More Kubernetes Scheduling Constraints

Kubernetes supports additional mechanisms for providing hints to
its scheduler about Pod placement. One of the simplest is NodeSe‐
lectors, which is very similar to node affinity, but with a less expres‐
sive syntax that can match on one or more labels by using AND
logic. Since you may or may not have the required privileges to
attach labels to Worker Nodes in your cluster, Pod affinity is often
a better option. Taints and tolerations are another mechanism that
can be used to configure Worker Nodes to repel specific Pods from
being scheduled on those nodes.
In general, you want to be careful to understand all of the con‐
straints you’re putting on the Kubernetes scheduler from various
workloads so as not to overly constrain its ability to place Pods.
See the Kubernetes documentation for more information on sched‐
uling constraints. We’ll also look at how Kubernetes allows you
to plug in different schedulers in “Alternative Schedulers for Kuber‐
netes” on page 233.

Helm, CI/CD, and Operations
Helm is a powerful tool focused on one primary task: deploying complex applications
to Kubernetes clusters. To get the most benefit from Helm, you’ll want to consider
how it fits into your larger CI/CD toolset:

• Automation servers such as Jenkins automatically build, test, and deploy soft‐•
ware according to scripts known as jobs. These jobs are typically run based on
predefined triggers, such as a commit to a source repository. Helm charts can
be referenced in jobs to install an application under test and its supporting
infrastructure in a Kubernetes cluster.

• IaC automation tools such as Terraform allow you to define templates and scripts•
that describe how to create infrastructure in a variety of cloud environments.
For example, you could write a Terraform script that automates the creation of a
new VPC within a specific cloud provider and the creation of a new Kubernetes
cluster within that VPC. The script could then use Helm to install applications
within the Kubernetes cluster.

Helm, CI/CD, and Operations | 99

https://oreil.ly/05hSU
https://oreil.ly/05hSU
https://oreil.ly/fbkTB
https://oreil.ly/aUWsi
https://oreil.ly/aUWsi
https://www.jenkins.io
https://www.terraform.io

While overlaps certainly occur in the capabilities these tools provide, you’ll want
to consider the strengths and limitations of each as you construct your toolset. For
this reason, we want to make sure to note that Helm has limitations when it comes
to managing the operations of applications that it deploys. To get a good picture
of the challenges involved, we spoke to a practitioner who has built assemblies of
Helm charts to manage a complex database deployment. This discussion begins to
introduce concepts like Kubernetes Custom Resource Definitions (CRDs) and the
operator pattern, both of which we’ll cover in depth in Chapter 5.

Pushing Helm to the Limit
With John Sanda, Software Engineer, DataStax

K8ssandra is a distribution of Apache Cassandra on Kubernetes built from multiple
open source components, including a Cassandra operator, known as Cass Operator;
operational tools for managing anti-entropy repair, known as Reaper; and backups,
known as Medusa. K8ssandra also includes the Prometheus-Grafana stack for metrics
collection and reporting.

From the start, we used Helm to help manage the installation and configuration
of these components. Helm enabled us to quickly bootstrap the project and attract
developers in the Cassandra community who didn’t necessarily have much Kuber‐
netes expertise and experience. Many of these folks found it easy to grasp a package
management tool and installer like Helm.

As the project grew, we began to run into some limitations with Helm. While it was
pretty straightforward to get the installation of K8ssandra clusters working correctly,
we encountered more issues when it came to upgrading and managing clusters:

Writing complex logic
Helm has good support for control flow, with loops and if statements. How‐
ever, when you start getting multiple levels deep, it’s harder to read and reason
through the code, and indentation becomes an issue. In particular, we found that
peer-reviewing changes to Helm charts became quite difficult.

Reuse and extensibility
Helm variables are limited to the scope of the template where you declare them,
which meant we had to re-create the same variables in multiple templates. This
prevented us from following the “don’t repeat yourself ” (DRY) principle, which
we found to be a source of defects.

Similarly, Helm has a big library of helper template functions, but that library
doesn’t cover every use case, and there is no interface to define your own func‐
tions. You can define your own custom templates, which allow for a lot of reuse,
but those are not a replacement for functions.

100 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

https://oreil.ly/jlAZi
https://oreil.ly/SOXkK
https://oreil.ly/LLjBD
https://oreil.ly/71DTv

Project structure and inheritance
We also ran into difficulties as we tried to implement an umbrella chart design
pattern, which is a best practice for Helm. We were able to create a top-level
K8ssandra Helm chart with subcharts for Cassandra and Prometheus but ran
into problems with variable scoping when attempting to create additional sub‐
charts. Our intent was to define authentication settings in the top-level chart
and push them down to subcharts, but this functionality is not supported by the
Helm inheritance model.

Custom resource management
Helm can create Kubernetes custom resources, but it doesn’t manage them.
This was a deliberate design choice that the Helm developers made for Helm 3.
Because the definition of a custom resource is cluster-wide, it can get confusing
if multiple Helm installs are trying to work off of different versions of a CRD.
This presented us with some difficulties in managing updates to resources like a
Cassandra Datacenter within Helm. The workaround was to implement custom
Kubernetes jobs labeled as pre-upgrade hooks that Helm would execute on an
upgrade. At some point, writing these jobs began to feel like we were writing an
operator.

Multicluster deployments
While we’ve been able to work around these Helm challenges in many cases,
the next major feature on our roadmap was implementing Cassandra clusters
that spanned multiple Kubernetes clusters. We realized that even without the
intricacies of the network configuration, this was going to be a step beyond what
we could implement effectively using Helm.

In the end, we realized that we were trying to make Helm do too much. It’s easy
to get into a situation where you learn how to use the hammer and everything
looks like a nail, but what you really need is a screwdriver. However, we don’t see
Helm and operators as mutually exclusive. These are complementary approaches,
and we need to use each one in terms of its strengths. We continue to use Helm
to perform basic installation actions including installing operators and setting
up the administrator service account used by Cassandra and other components;
these are the sort of actions that package managers like Helm do best.

Note: this sidebar was adapted from the post “We Pushed Helm to the Limit,
Then Built a Kubernetes Operator”.

As John Sanda notes in his commentary, Helm is a powerful tool for scripting the
deployment of applications consisting of multiple Kubernetes resources, but can
be less effective at managing more complex operational tasks. As you’ll see in the
chapters to come, a common pattern used for data infrastructure and other complex
applications is to use a Helm chart to deploy an operator, which can then in turn
manage both the deployment and lifecycle of the application.

Helm, CI/CD, and Operations | 101

https://oreil.ly/2xyX0
https://oreil.ly/2xyX0

Summary
In this chapter, you’ve learned how a package management tool like Helm can help
you manage the deployment of applications on Kubernetes, including your database
infrastructure. Along the way, you’ve also learned how to use some additional Kuber‐
netes resources like ServiceAccounts, Secrets, and ConfigMaps. Now it’s time to
round out our discussion of running databases on Kubernetes. In the next chapter,
we’ll take a deeper dive into managing database operations on Kubernetes by using
the operator pattern.

102 | Chapter 4: Automating Database Deployment on Kubernetes with Helm

CHAPTER 5

Automating Database Management
on Kubernetes with Operators

In this chapter, we’ll continue our exploration of running databases on Kubernetes,
but shift our focus from installation to operations. It’s not enough just to know
how the elements of a database application map onto the primitives provided by
Kubernetes for an initial deployment. You also need to know how to maintain that
infrastructure over time in order to support your business-critical applications. In
this chapter, we’ll take a look at the Kubernetes approach to operations so that you
can keep databases running effectively.

Operations for databases and other data infrastructure consist of a common list of
“day two” tasks, including the following:

• Scaling capacity up and down, including reallocating workload across resized•
clusters

• Monitoring database health and replacing failed (or failing) instances•
• Performing routine maintenance tasks, such as repair operations in Apache•

Cassandra
• Updating and patching software•
• Maintaining secure access keys and other credentials that may expire over time•
• Performing backups, and using them to restore data in disaster recovery•

While the details of how these tasks are performed may vary among technologies,
the common concern is how we can use automation to reduce the workload on
human operators and enable us to operate infrastructure at larger and larger scales.
How can we incorporate the knowledge that human operators have built up around
these tasks? While traditional cloud operations have used scripting tools that run

103

externally to your cloud infrastructure, a more cloud native approach is to have this
database control logic running directly within your Kubernetes clusters. The question
we’ll explore in this chapter is: what is the Kubernetes-friendly way to represent this
control logic?

Extending the Kubernetes Control Plane
The good news is that the designers of Kubernetes aren’t surprised at all by this
question. In fact, the Kubernetes control plane and API are designed to be extensible.
Kelsey Hightower and others have referred to Kubernetes as “a platform for building
platforms”.

Kubernetes provides multiple extension points, primarily related to its control plane.
Figure 5-1 includes the Kubernetes core components such as the API server, schedu‐
ler, Kubelet and kubectl, along with indications of the extension points they support.

Figure 5-1. Kubernetes control plane and extension points

104 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/pFRDO
https://oreil.ly/pFRDO
https://oreil.ly/hsxFY
https://oreil.ly/UXbo0

Now let’s examine the details of extending the Kubernetes control plane, starting with
components on your local client and those within the Kubernetes cluster. Many of
these extension points are relevant to databases and data infrastructure.

Extending Kubernetes Clients
The kubectl command-line tool is the primary interface for many users for interact‐
ing with Kubernetes. You can extend kubectl with plug-ins that you download and
make available on your system’s PATH, or use Krew, a package manager that maintains
a list of kubectl plug-ins. Plug-ins perform tasks such as bulk actions across multiple
resources or even multiple clusters, or assessing the state of a cluster and making
security or cost recommendations. More particularly to our focus in this chapter,
several plug-ins are available to manage operators and custom resources.

Extending Kubernetes Control Plane Components
The core of the Kubernetes control plane consists of several control plane compo‐
nents including the API server, scheduler, controller manager, Cloud Controller Man‐
ager, and etcd. While these components can be run on any node within a Kubernetes
cluster, they are typically assigned to a dedicated node which does not run any user
application Pods. The components are as follows:

API server
This is the primary interface for external and internal clients of a Kubernetes
cluster. It exposes RESTful interfaces via an HTTP API. The API server performs
a coordination role, routing requests from clients to other components to imple‐
ment imperative and declarative instructions. The API server supports two types
of extensions: custom resources and API aggregation. CRDs allow you to add
new types of resources and are managed through kubectl without further exten‐
sion. API aggregation allows you to extend the Kubernetes API with additional
REST endpoints, which the API server will delegate to a separate API server
provided as a plug-in. Custom resources are the more commonly used extension
mechanism and will be a major focus throughout the remainder of the book.

Scheduler
This determines the assignment of Pods to Worker Nodes, considering factors
including the load on each Worker Node, as well as affinity rules, taints, and
tolerations (as discussed in Chapter 4). The scheduler can be extended with
plug-ins that override default behavior at multiple points in its decision-making
process. For example, a scheduling plug-in could filter out nodes for a specific
type of Pod or set the relative priority of nodes by assigning a score. Binding
plug-ins can customize the logic that prepares a node for running a scheduled
Pod, such as mounting a network volume the Pod needs. Data infrastructure
such as Apache Spark that relies on running a lot of short-lived tasks may benefit

Extending the Kubernetes Control Plane | 105

https://oreil.ly/kbh4u
https://krew.dev
https://oreil.ly/iw93T
https://oreil.ly/AllQX
https://oreil.ly/AllQX
https://oreil.ly/3Bsj2
https://oreil.ly/BWbpn
https://oreil.ly/Exxjp
https://oreil.ly/ZnxfB
https://oreil.ly/ZnxfB

from this ability to exercise more fine-grained control over scheduling decisions,
as we’ll discuss in “Alternative Schedulers for Kubernetes” on page 233.

etcd
This distributed key-value store is used by the API server to persist information
about the cluster’s configuration and status. As resources are added, removed and
updated, the API server updates the metadata in etcd accordingly, so that if the
API server crashes or needs to be restarted, it can easily recover its state. As a
strongly consistent data store that supports high availability, etcd is frequently
used by other data infrastructure that runs on Kubernetes, as we’ll see frequently
throughout the book.

Controller manager and Cloud Controller Manager
The controller manager and Cloud Controller Manager incorporate multiple
control loops called controllers. These managers contain multiple logically sep‐
arate controllers compiled into a single executable to simplify the ability of
Kubernetes to manage itself. The controller manager includes controllers which
manage built-in resource types such as Pods, StatefulSets, and more. The Cloud
Controller Manager includes controllers that differ among Kubernetes providers
to enable the management of platform-specific resources such as load balancers
or VMs.

Extending Kubernetes Worker Node Components
Some elements of the Kubernetes control plane run on every node in the cluster.
These Worker Node components include the Kubelet, kube-proxy, and container
runtime:

Kubelet
This manages the Pods running on a node assigned by the scheduler, including
the containers that run within a Pod. The Kubelet restarts containers when
needed, provides access to container logs, and more.

Compute, network, and storage plug-ins
The Kubelet can be extended with plug-ins that take advantage of unique com‐
pute, networking, and storage capabilities provided by the underlying environ‐
ment on which it is running. Compute plug-ins include container runtimes,
and device plug-ins that expose specialized hardware capabilities such as GPUs
or field-programmable gate arrays (FPGA). Network plug-ins, including those
that comply with the Container Network Interface (CNI), can provide features
beyond Kubernetes built-in networking, such as bandwidth management or
network policy management. We’ve previously discussed storage plug-ins in
“Kubernetes Storage Architecture” on page 42, including those that conform to
the CSI.

106 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/KmmkS
https://oreil.ly/cdqrT
https://oreil.ly/aMdKH

Kube-proxy
This maintains network routing for the Pods running on a Worker Node so that
they can communicate with other Pods running inside your Kubernetes cluster,
or clients and services running outside of the cluster. Kube-proxy is part of the
implementation of Kubernetes Services, providing the mapping of virtual IPs to
individual Pods on a Worker Node.

Container runtime
The Kubelet uses the container runtime to execute containers on the worker’s
operating system. Supported container runtimes for Linux include containerd
and CRI-O. Docker runtime support was deprecated in Kubernetes 1.20 and
removed entirely in 1.24.

Custom controllers and operators
These controllers are responsible for managing applications installed on a Kuber‐
netes cluster using custom resources. Although these controllers are extensions
to the Kubernetes control plane, they can run on any Worker Node.

The Operator Pattern
With this context, we’re ready to examine one of the most common patterns for
extending Kubernetes: the operator pattern. This pattern combines custom resources
with controllers that operate on those resources. Let’s examine each of these concepts
in more detail to see how they apply to data infrastructure, and then you’ll be ready to
dig into an example operator for MySQL.

Controllers
The concept of a controller originates from the domain of electronics and electrical
engineering, in which a controller is a device that operates in a continuous loop. On
each iteration through the loop, the device receives an input signal, compares that
with a set point value, and generates an output signal intended to produce a change
in the environment that can be detected in future inputs. A simple example is a
thermostat, which powers up your air conditioner or heater when the temperature in
a space is too high or low.

A Kubernetes controller implements a similar control loop, consisting of the following
steps:

The Operator Pattern | 107

https://oreil.ly/6ylhH
https://oreil.ly/8fk2x
https://oreil.ly/col9R
https://oreil.ly/LKefh

1. Reading the current state of resources1.
2. Making changes to the state of resources2.
3. Updating the status of resources3.
4. Repeat4.

These steps are embodied both by Kubernetes built-in controllers that run in the
controller manager and Cloud Controller Manager, as well as custom controllers that
are provided to run applications on top of Kubernetes. Let’s look at some examples of
what these steps might entail for controllers that manage data infrastructure:

Reading the current state of resources
A controller tracks the state of one or more resource types, including built-in
resources like Pods, PersistentVolumes, and Services, as well as custom resources
(which we discuss in the next section). Controllers are driven asynchronously by
notification from the API server. The API server sends watch events to control‐
lers to notify them of changes in state for resource types for which they have
registered interest, such as the creation or deletion of a resource, or an event
occurring on the resource.

For data infrastructure, these changes could include a change in the number of
requested replicas for a cluster, or a notification that a Pod containing a database
replica has died. Because many such updates could be occurring in a large cluster,
controllers frequently use caching.

Making changes to the state of resources
This is the core business logic of a controller—comparing the state of resources
to their desired state and executing actions to change the state to the desired
state. In the Kubernetes API, the current state is captured in .status fields
of resources, and the desired state is expressed in terms of the .spec field.
The changes could include invocations of the Kubernetes API to modify other
resources, administrative actions on the application being managed, or even
interactions outside of the Kubernetes cluster.

For example, consider a controller managing a distributed database with multiple
replicas. When the database controller receives a notification that the desired
number of replicas has increased, the controller could scale an underlying
Deployment or StatefulSet that it is using to manage replicas. Later, when
receiving a notification that a Pod has been created to host a new replica, the
controller could initiate an action on one or more replicas in order to rebalance
the workload across those replicas.

108 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/UvOJY

Updating the status of resources
In the final step of the control loop, the controller updates the .status fields of
the resource using the API server, which in turn updates that state in etcd. You’ve
viewed the status of resources like Pods and PersistentVolumes in previous chap‐
ters using the kubectl get and kubectl describe commands. For example, the
status of a Pod includes its overall state (Pending, Running, Succeeded, Failed,
etc.), the most recent time at which various conditions were noted (PodSched
uled, ContainersReady, Initialized, Ready), as well as the state of each of its
containers (Waiting, Running, Terminated). Custom resources can define their
own status fields as well. For example, a custom resource representing a cluster
might have status values reflecting the overall availability of the cluster and its
current topology.

Events
A controller can also produce events via the Kubernetes API for consumption by
human operators or other applications. These are distinct from the watcher events
described previously that the Kubernetes API uses to notify controllers of changes,
which are not exposed to other clients.

Writing a Custom Controller

While you may not ever need to write your own controller, being
familiar with the concepts involved is helpful. Programming Kuber‐
netes is a great resource for those interested in digging deeper.
The controller-runtime project provides a common set of libraries
to help aid the process of writing controllers, including register‐
ing for notifications from the API server, caching resource status,
implementing reconciliation loops, and more. Controller-runtime
libraries are implemented in the Go programming language, so it’s
no surprise that most controllers are implemented in Go.
Go was first developed at Google in 2007 and used in many cloud
native applications including Borg, the predecessor to Kubernetes,
and then in Kubernetes itself. Go is a strongly typed, compiled
language (as opposed to interpreted languages like Java and Java‐
Script) with a high value on usability and developer productivity
(in reaction to the higher learning curve of C/C++).

If you’ve ever misconfigured a Pod specification and observed a CrashLoopBackOff
status, you may have encountered events. Using the kubectl describe pod com‐
mand, you can observe events such as a container being started and failing, followed
by a backoff period, followed by the container restarting. Events expire from the API

The Operator Pattern | 109

https://oreil.ly/Ad4Ga
https://oreil.ly/Ad4Ga
https://oreil.ly/VjP9w
https://go.dev

server in an hour, but common Kubernetes monitoring tools provide capabilities to
track them. Controllers can also create events for custom resources.

Custom Resources
As we’ve discussed, controllers can operate on built-in Kubernetes resources as well
as custom resources. We’ve briefly mentioned this concept, but let’s take this opportu‐
nity to define what custom resources are and how they extend the Kubernetes API.

Fundamentally, a custom resource is a piece of configuration data that Kubernetes
recognizes as part of its API. While a custom resource is similar to a ConfigMap, it
has a structure similar to built-in resources: metadata, specification, and status. The
specific attributes of a particular custom resource type are defined in a CRD. A CRD
is itself a Kubernetes resource that is used to describe a custom resource.

In this book, we’ve been discussing how Kubernetes enables you to move beyond
managing VMs and containers to managing virtual datacenters. CRDs provide the
flexibility that helps make this a practical reality. Instead of being limited to the
resources that Kubernetes provides off the shelf, you can create additional abstrac‐
tions to extend Kubernetes for your own purposes. This is a critical component in a
fast-moving ecosystem.

Let’s see what you can learn about CRDs from the command line. Use kubectl
api-resources to get a listing of all of the resources defined in your cluster:

kubectl api-resources
NAME SHORTNAMES APIVERSION NAMESPACED KIND
bindings v1 true Binding
componentstatuses cs v1 false ComponentStatus
configmaps cm v1 true ConfigMap
...

As you look through the output, you’ll see many resource types introduced in pre‐
vious chapters, along with their short names: StorageClass (sc), PersistentVolumes
(pv), Pods (po), StatefulSets (sts), and so on. The API versions provide some clues as
to the origins of each resource type. For example, resources with version v1 are core
Kubernetes resources. Other versions such as apps/v1, networking.k8s.io/v1, or
storage.k8s.io/v1 indicate resources that are defined by various Kubernetes SIGs.

Depending on the configuration of the Kubernetes cluster you are using, you may
have some CRDs defined already. If any are present, they will appear in the output of
the kubectl api-resources command. They’ll stand out by their API version, which
will typically include a path other than k8s.io.

Since a CRD is itself a Kubernetes resource, you can also use the command kubectl
get crd to list custom resources installed in your Kubernetes cluster. For example,

110 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/62uQj

after installing the Vitess Operator referenced in the following section, you would see
several CRDs:

kubectl get crd
NAME CREATED AT
etcdlockservers.planetscale.com 2021-11-21T22:06:04Z
vitessbackups.planetscale.com 2021-11-21T22:06:04Z
vitessbackupstorages.planetscale.com 2021-11-21T22:06:04Z
vitesscells.planetscale.com 2021-11-21T22:06:04Z
vitessclusters.planetscale.com 2021-11-21T22:06:04Z
vitesskeyspaces.planetscale.com 2021-11-21T22:06:04Z
vitessshards.planetscale.com 2021-11-21T22:06:04Z

We’ll introduce the usage of these custom resources later, but for now let’s focus
on the mechanics of a specific CRD to see how it extends Kubernetes. You use the
kubectl describe crd or kubectl get crd commands to see the definition of a
CRD. For example, to get a YAML-formatted description for the vitesskeyspace
custom resource, you could run this:

kubectl get crd vitesskeyspaces.planetscale.com -o yaml
...

Looking at the original YAML configuration for this CRD, you’ll see something like
this:

apiVersion: apiextensions.k8s.io/v1beta1
kind: CustomResourceDefinition
metadata:
 annotations:
 controller-gen.kubebuilder.io/version: v0.3.0
 creationTimestamp: null
 name: vitesskeyspaces.planetscale.com
spec:
 group: planetscale.com
 names:
 kind: VitessKeyspace
 listKind: VitessKeyspaceList
 plural: vitesskeyspaces
 shortNames:
 - vtk
 singular: vitesskeyspace
 scope: Namespaced
 subresources:
 status: {}
 validation:
 openAPIV3Schema:
 properties:
 ...

From this part of the definition, you can see the declaration of the custom resource’s
name or kind and shortName. The scope designation of Namespaced means that
custom resources of this type are confined to a single Namespace.

The Operator Pattern | 111

https://oreil.ly/5ml3q

The longest part of the definition is the validation section, which we’ve omitted
due to its considerable size. Kubernetes supports the definition of attributes within
custom resource types, and the ability to define legal values for these types using the
OpenAPI v3 schema (which is used to document RESTful APIs, which in turn uses
JSON schema to describe rules used to validate JSON objects). Validation rules ensure
that when you create or update custom resources, the definitions of the objects are
valid and can be understood by the Kubernetes control plane. The validation rules are
used to generate the documentation you use as you define instances of these custom
resources in your application.

Once a CRD has been installed in your Kubernetes cluster, you can create and inter‐
act with the resources using kubectl. For example, kubectl get vitesskeyspaces
will return a list of Vitess keyspaces. You create an instance of a Vitess keyspace by
providing a compliant YAML definition to the kubectl apply command.

Operators
Now that you’ve learned about custom controllers and custom resources, let’s tie
these threads back together. An operator is a combination of custom resources and
custom controllers that maintain the state of those resources and manage an applica‐
tion (or operand) in Kubernetes.

As we’ll see in examples throughout the rest of the book, this simple definition
can cover a pretty wide range of implementations. The recommended pattern is to
provide a custom controller for each custom resource, but beyond that, the details
vary. A simple operator might consist of a single resource and controller, while a
more complex operator might have multiple resources and controllers. Those multi‐
ple controllers might run in the same process space or be broken into separate Pods.

Controllers Versus Operators

While technically operators and controllers are distinct concepts
in Kubernetes, the terms are frequently used interchangeably. It’s
common to refer to a deployed controller or collection of control‐
lers as “the operator,” and you’ll see this usage reflected both in this
book and the community in general.

To unpack this pattern and see how the different elements of an operator and the
Kubernetes control plane work together, let’s consider the interactions of a notional
operator, the DBCluster operator, as shown in Figure 5-2.

After an administrator installs the DBCluster operator and db-cluster custom
resource in the cluster, users can then create instances of the db-cluster resource
using kubectl (1), which registers the resource with the API server (2), which in

112 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/b13qP
http://json-schema.org
https://oreil.ly/BXc35

turns stores the state in etcd (3) to ensure high availability (other interactions with
etcd are omitted from this sequence for brevity).

Figure 5-2. Interaction between Kubernetes controllers and operators

The DBCluster controller (part of the operator) is notified of the new db-cluster
resource (4) and creates additional Kubernetes resources using the API server
(5), which could include StatefulSets, Services, PersistentVolumes, PersistentVolume‐
Claims, and more, as we’ve seen in previous examples of deploying databases on
Kubernetes.

Focusing on the StatefulSet path, the StatefulSet controller running as part of the
Kubernetes controller manager is notified of a new StatefulSet (6) and creates new
Pod resources (7). The API server asks the scheduler to assign each Pod to a Worker
Node (8) and communicates with the Kubelet on the chosen Worker Nodes (9) to
start each of the required Pods (10).

As you see, creating a db-cluster resource sets off a chain of interactions as various
controllers are notified of changes to Kubernetes resources and initiate changes
to bring the state of the cluster in line with the desired state. The sequence of
interactions appears complex from a user perspective, but the design demonstrates
strong encapsulation: the responsibilities of each controller are well bounded and
independent of other controllers. This separation of concerns is what makes the
Kubernetes control plane so extensible.

The Operator Pattern | 113

Managing MySQL in Kubernetes Using the Vitess Operator
Now that you understand how operators, custom controllers, and custom resources
work, it’s time to get some hands-on experience with an operator for the database
we’ve been using as our primary relational database example: MySQL. MySQL exam‐
ples in previous chapters were confined to simple deployments of a single primary
replica and a couple of secondary replicas. While this could provide a sufficient
amount of storage for many cloud applications, managing a larger cluster can quickly
become quite complex, whether it runs on bare-metal servers or as a containerized
application in Kubernetes.

Vitess Overview
Vitess is an open source project started at YouTube in 2010. Before the company was
acquired by Google, YouTube was running on MySQL, and as YouTube scaled up, it
reached a point of daily outages. Vitess was created as a layer to abstract application
access to databases by making multiple instances appear to be a single database,
routing application requests to the appropriate instances using a sharding approach.
Before we explore deploying Vitess on Kubernetes, let’s take some time to explore
its architecture. We’ll start with the high-level concepts shown in Figure 5-3: cells,
keyspaces, shards, and primary and replica tablets.

Figure 5-3. Vitess cluster topology: cells, keyspaces, and shards

114 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/7I0vO

At a high level, a Vitess cluster consists of multiple MySQL instances called tablets
which may be spread across multiple datacenters, or cells. Each MySQL instance takes
on a role as either a primary or replica, and may be dedicated to a specific slice of a
database known as a shard. Let’s consider the implications of each of these concepts
for reading and writing data in Vitess:

Cell
A typical production deployment of Vitess is spread across multiple failure
domains in order to provide high availability. Vitess refers to each of these failure
domains as a cell. The recommended topology is a cell per datacenter or cloud
provider zone. While writes and replication involve communication across cell
boundaries, Vitess reads are confined to the local cell to optimize performance.

Keyspace
This is a logical database consisting of one or more tables. Each keyspace in
a cluster can be sharded or unsharded. An unsharded keyspace has a primary
cell where a MySQL instance designated as the primary will reside, while other
cells will contain replicas. In the unsharded keyspace shown on the left side
of Figure 5-3, writes from client applications are routed to the primary and
replicated to the replica nodes in the background. Reads can be served from the
primary or replica nodes.

Shard
The real power of Vitess comes from its ability to scale by spreading the contents
of a keyspace across multiple replicated MySQL databases known as shards, while
providing the abstraction of a single database to client applications. The client on
the right side of Figure 5-3 is not aware of how data is sharded. On writes, Vitess
determines what shards are involved and then routes the data to the appropriate
primary instances. On reads, Vitess gathers data from primary or replica nodes
in the local cell.

The sharding rules for a keyspace are specified in a Vitess Schema (VSchema),
an object that contains the sharding key (known in Vitess as the keyspace ID)
used for each table. To provide maximum flexibility over the way data is sharded,
Vitess allows you to specify which columns in a table are used to calculate the
keyspace ID, as well as the algorithm (or VIndex) used to make the calculation.
Tables can also have secondary VIndexes to support more-efficient queries across
multiple keyspace IDs.

To understand how Vitess manages shards and how it routes queries to the various
MySQL instances, you’ll want to get to know the components of a Vitess cluster
shown in Figure 5-4, including VTGate, VTTablet, and the Topology Service.

Managing MySQL in Kubernetes Using the Vitess Operator | 115

https://oreil.ly/2VDke
https://oreil.ly/wDmQa

Figure 5-4. Vitess architecture including VTGate, VTTablets, and the Topology Service

Let’s walk through these components to learn what they do and how they interact:

VTGate
A Vitess gateway (VTGate) is a proxy server that provides the SQL binary
endpoint used by client applications, making the Vitess cluster appear as a single
database. Vitess clients generally connect to a VTGate running in the same cell
(datacenter). The VTGate parses each incoming read or write query and uses
its knowledge of the VSchema and cluster topology to create a query execution
plan. The VTGate executes queries for each shard, assembles the result set, and
returns it to the client. The VTGate can detect and limit queries that will impact
memory or CPU utilization, providing high reliability and helping to ensure
consistent performance. Although VTGate instances do cache cluster metadata,
they are stateless, so you can increase the reliability and scalability of your cluster
by running multiple VTGate instances per cell.

VTTablet
A Vitess tablet (VTTablet) is an agent that runs on the same compute instance
as a single MySQL database, managing access to it and monitoring its health.
Each VTTablet takes on a specific role in the cluster, such as the primary for a
shard, or one of its replicas. There are two types of replica: those that can be
promoted to replace a primary and those that cannot. The latter are typically
used to provide additional capacity for read-intensive use cases such as analytics.

116 | Chapter 5: Automating Database Management on Kubernetes with Operators

The VTTablet exposes a gRPC interface, which the VTGate uses to send queries
and control commands that the VTTablet then turns into SQL commands on
the MySQL instance. VTTablets maintain a pool of long-lived connections to
the MySQL node, leading to improved throughput, reduced latency, and reduced
memory pressure.

Topology Service
Vitess requires a strongly consistent data store to maintain a small amount of
metadata describing the cluster topology, including the definition of keyspaces
and their VSchema, what VTTablets exist for each shard, and which VTTablet is
the primary. Vitess uses a pluggable interface called the Topology Service, with
three implementations provided by the project: etcd (the default), ZooKeeper,
and Consul. VTGates and VTTablets interface with the Topology Service in the
background in order to maintain awareness of the topology, and do not interact
with the Topology Service on the query path to avoid performance impact. For
multicell clusters, Vitess incorporates both cell-local Topology Services and a
global Topology Service with instances in multiple cells that maintains knowl‐
edge of the entire cluster. This design provides high availability of topology
information across the cluster.

vtctld and vtctlclient
The Vitess control daemon vtctld and its client, vtctlclient, provide the
control plane used to configure and manage Vitess clusters. vtctld is deployed
on one or more of the cells in the cluster, while vtctlclient is deployed on the
client machine of the user administering the cluster. vtctld uses a declarative
approach similar to Kubernetes to perform its work: it updates the cluster meta‐
data in the Topology Service, and the VTGates and VTTablets pick up changes
and respond accordingly.

Now that you understand the Vitess architecture and basic concepts, let’s discuss how
they are mapped into a Kubernetes environment. This is an important consideration
for any application, but especially for a complex piece of data infrastructure like
Vitess.

PlanetScale Vitess Operator
Over time, Vitess has evolved in a couple of key aspects. First, it can now run
additional MySQL-compatible database engines such as Percona. Second, and more
important for our investigations, PlanetScale has packaged Vitess as a containerized
application that can be deployed to Kubernetes.

Managing MySQL in Kubernetes Using the Vitess Operator | 117

Evolving Options For Running Vitess in Kubernetes

The state of the art for running Vitess in Kubernetes has evolved
over time. While Vitess once included a Helm chart, this was
deprecated in the 7.0 release in mid-2020. The Vitess project also
hosted an operator which was deprecated around the same time.
Both of these options were retired in favor of the PlanetScale oper‐
ator we examine in this section.

Let’s see how easy it is to deploy a multinode MySQL cluster using the PlanetScale
Vitess Operator. Since the Vitess project has adopted the PlanetScale Vitess Operator
as its officially supported operator, you can reference the Get Started guide in the
Vitess project documentation. We’ll walk through a portion of this guide here to get
an understanding of the operator’s contents and how it works.

Examples Require Kubernetes Clusters with More Resources

The examples in previous chapters have not required a large
amount of compute resources, and we encouraged you to run them
on local distributions such as kind or K3s. Beginning in this chap‐
ter, the examples become more complex and may require more
resources than you have available on your desktop or laptop. For
these cases, we will provide references to documentation or scripts
for creating Kubernetes clusters with sufficient resources.

Installing the Vitess Operator
You can find the source code used in this section in this book’s code repository. The
files are copied for convenience from their original source in the Vitess GitHub repo.
First, install the operator using the provided configuration file:

set GH_LINK=https://raw.githubusercontent.com
kubectl apply -f \
 $GH_LINK/vitessio/vitess/main/examples/operator/operator.yaml
customresourcedefinition.apiextensions.k8s.io/
 etcdlockservers.planetscale.com created
...

As you’ll see in the output of the kubectl apply command, this configuration creates
several CRDs, as well as a Deployment managing a single instance of the operator.
Figure 5-5 shows many of the elements you’ve just installed, in order to highlight a
few interesting details that will not be obvious at first glance:

118 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/xhUt4
https://oreil.ly/4RPMj
https://oreil.ly/W5Dc2
https://oreil.ly/W5Dc2
https://oreil.ly/Nl7e2
https://github.com/data-on-k8s-book/examples
https://oreil.ly/Kq7dm

• The operator contains a controller corresponding to each CRD. If you’re interes‐•
ted in seeing what this looks like in the operator source code in Go, compare the
controller implementations with the custom resource specifications that are used
to generate the CRD configurations introduced in “Building Operators” on page
130.

• The figure depicts a hierarchy of CRDs representing their relationships and•
intended usage, as described in the operator’s API reference. To use the Vitess
Operator, you define a VitessCluster resource which contains the definitions of
VitessCells and VitessKeyspaces. VitessKeyspaces, in turn, contain definitions of
VitessShards. While you can view the status of each VitessCell, VitessKeyspace,
and VitessShard independently, you must update them in the context of the
parent VitessCluster resource.

• Currently, the Vitess Operator supports only etcd as the Topology Service imple‐•
mentation. The EtcdLockserver CRD is used to configure these etcd clusters.

Figure 5-5. Vitess Operator and Custom Resource Definitions

Managing MySQL in Kubernetes Using the Vitess Operator | 119

https://oreil.ly/ABID9
https://oreil.ly/tUD9z
https://oreil.ly/25qhN

Roles and RoleBindings. As shown toward the bottom of Figure 5-5, installing the
operator caused the creation of a ServiceAccount, along with two new resources we
have not discussed previously: a Role and a RoleBinding. These additional resources
allow the ServiceAccount to access specific resources on the Kubernetes API. First,
examine the configuration of the vitess-operator Role from the file that you used
to install the operator (you can search for kind: Role to locate the pertinent code):

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: vitess-operator
rules:
- apiGroups:
 - ""
 resources:
 - pods
 - services
 - endpoints
 - persistentvolumeclaims
 - events
 - configmaps
 - secrets
 verbs:
 - '*'
...

This first portion of the Role definition identifies resources that are part of the core
Kubernetes distribution, which may be designated by passing the empty string as
the apiGroup instead of k8s.io. The verbs correspond to operations the Kubernetes
API provides on resources, including get, list, watch, create, update, patch, and
delete. This Role is given access to all operations using the wildcard *. If you follow
the URL in the example and examine more of the code, you’ll also see how the
Role is given access to other resources, including Deployments and ReplicaSets, and
resources in the apiGroup planetscale.com.

The RoleBinding associates the ServiceAccount with the Role:

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: vitess-operator
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: vitess-operator
subjects:
- kind: ServiceAccount
 name: vitess-operator

120 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/q52Iq

Least Privilege for Operators

As a creator or consumer of operators, exercise care in choosing
which permissions are granted to operators, and be conscious of
the implications for what an operator is allowed to do.

PriorityClasses. Another detail is not depicted in Figure 5-4: installing the operator
created two PriorityClass resources. PriorityClasses provide input to the Kubernetes
scheduler to indicate the relative priority of Pods. The priority is an integer value,
where higher values indicate higher priority. Whenever a Pod resource is created
and is ready to be assigned to a Worker Node, the Scheduler takes the Pod’s priority
into account as part of its decisions. When multiple Pods are awaiting scheduling,
higher-priority Pods are assigned before lower-priority Pods. When a cluster’s nodes
are running low on compute resources, lower-priority Pods may be stopped or evicted
in order to make room for higher-priority Pods, a process known as preemption.

A PriorityClass is a convenient way to set a priority value referenced by multiple Pods
or other workload resources such as Deployments and StatefulSets. The Vitess Oper‐
ator creates two PriorityClasses: vitess-operator-control-plane defines a higher
priority used for the operator and vtctld Deployments, while the vitess class is
used for the data plane components such as the VTGate and VTTablet Deployments.

Kubernetes Scheduling Complexity

Kubernetes provides multiple constraints that influence Pod sched‐
uling, including prioritization and preemption, affinity and anti-
affinity, and scheduler extensions, as discussed in “Extending
Kubernetes Clients” on page 105. The interaction of these con‐
straints may not be predictable, especially in large clusters shared
across multiple teams. As resources in a cluster become scarce,
Pods can be preempted or fail to be scheduled in ways you don’t
expect. It’s a best practice to maintain awareness of the various
scheduling needs and constraints across the workloads in your
cluster to avoid surprises.

Creating a VitessCluster
Now let’s create a VitessCluster and put the operator to work. The code sample
contains a configuration file defining a very simple cluster named example, with a
VitessCell zone1, keyspace commerce, and single shard, which the operator gives the
name x-x:

kubectl apply -f 101_initial_cluster.yaml
vitesscluster.planetscale.com/example created
secret/example-cluster-config created

Managing MySQL in Kubernetes Using the Vitess Operator | 121

https://oreil.ly/dlkRe

The output of the command indicates a couple of items that are created directly.
But more is going on behind the scenes, as the operator detects the creation of the
VitessCluster and begins provisioning other resources, as summarized in Figure 5-6.

Figure 5-6. Resources managed by the VitessCluster example

122 | Chapter 5: Automating Database Management on Kubernetes with Operators

By comparing the configuration script with Figure 5-6, you can make several obser‐
vations about this simple VitessCluster. First, the top-level configuration allows you
to specify the name of the cluster and the container images that will be used for the
various components:

apiVersion: planetscale.com/v2
kind: VitessCluster
metadata:
 name: example
spec:
 images:
 vtctld: vitess/lite:v12.0.0
 ...

Next, the VitessCluster configuration provides a definition of the VitessCell zone1.
The values provided for gateway specify a single VTGate instance to be allocated for
this cell, with specific compute resource limits:

 cells:
 - name: zone1
 gateway:
 authentication:
 static:
 secret:
 name: example-cluster-config
 key: users.json
 replicas: 1
 resources:
 ...

The Vitess Operator uses this information to create a VTGate Deployment prefixed
with example-zone1-vtgate containing a single replica, and a Service that provides
access. The access credentials for the VTGate instance are provided in the example-
cluster-config Secret. This Secret is used to secure other configuration values, as
you’ll see.

The next section of the VitessCluster configuration specifies the creation of a single
vtctld instance (a dashboard) with permission to control zone1. The Vitess Operator
uses this information to create a Deployment to manage the dashboard using the
specified resource limits, and a Service to provide access to the VTGate:

 vitessDashboard:
 cells:
 - zone1
 extraFlags:
 security_policy: read-only
 replicas: 1
 resources:
 ...

Managing MySQL in Kubernetes Using the Vitess Operator | 123

The VitessCluster also defines the commerce keyspace, which contains a single shard
(essentially, an unsharded keyspace). This single shard has a pool of two VTTablets in
the cell zone1, each of which will be allocated 10 GB of storage:

 keyspaces:
 - name: commerce
 turndownPolicy: Immediate
 partitionings:
 - equal:
 parts: 1
 shardTemplate:
 databaseInitScriptSecret:
 name: example-cluster-config
 key: init_db.sql
 replication:
 enforceSemiSync: false
 tabletPools:
 - cell: zone1
 type: replica
 replicas: 2
 vttablet:
 ...
 mysqld:
 ...
 dataVolumeClaimTemplate:
 accessModes: ["ReadWriteOnce"]
 resources:
 requests:
 storage: 10Gi

As shown in Figure 5-6, the Vitess Operator manages a Pod for each VTTablet and
creates a Service to manage access across the tablets. The operator does not use a
StatefulSet because the VTTablets have distinct roles, with one as the primary and
the other as a replica. Each VTTablet Pod contains multiple containers, including
the vttablet sidecar which configures and controls the mysql container. The vttab
let sidecar initializes the mysql instance using a script contained in the example-
cluster-config Secret.

While this configuration doesn’t specifically include details about etcd, the Vitess
Operator uses its default settings to create a three-node etcd cluster to serve as the
Topology Service for the VitessCluster. Because of the shortcomings of the Stateful‐
Sets, the operator manages each Pod and PersistentVolumeClaim individually. This
points to the possibility for future improvements as Kubernetes and the operator
mature; perhaps the Kubernetes API server can one day serve the role of the Topol‐
ogy Service in the Vitess architecture.

At this point, you have a VitessCluster with all of its infrastructure provisioned in
Kubernetes. The next steps are to create the database schema and configure your
applications to access the cluster using the VTGate Service. You can follow the steps

124 | Chapter 5: Automating Database Management on Kubernetes with Operators

in Alkin Tezuysal’s 2020 blog post “Vitess Operator for Kubernetes”, which also
describes other use cases for managing a Vitess installation on Kubernetes, including
schema migration, backup, and restore.

The backup/restore capabilities leverage VitessBackupStorage and VitessBackup
CRDs, which you may have noticed during installation. VitessBackupStorage
resources represent locations where backups can be stored. After you configure
the backup section of a VitessCluster and point to a backup location, the operator
creates VitessBackup resources as a record of each backup it performs. When you add
additional replicas to a VitessCluster, the operator initializes their data by performing
a restore from the most recent backup.

Visualizing Larger Kubernetes Applications

It’s a good exercise to use the kubectl get and kubectl describe
commands to explore all of the resources that were created when
you installed the operator and created a cluster. However, you may
find it easier to use a tool such as Lens, which offers a friendly
graphical interface enabling you to click through the resources
more quickly, or K9s, which provides a command-line interface.

Resharding is another interesting use case, which you might need to perform when
a cluster becomes unbalanced and one or more shards run out of capacity more
quickly than others. You’ll need to modify the VSchema using vtctlclient, and then
update the VitessCluster resource with additional VitessShards so that the operator
provisions the required infrastructure. This highlights the division of responsibility:
the Vitess Operator manages Kubernetes resources, while the Vitess control daemon
(vtctld) provides more application-specific behavior.

What We Learned Building the Vitess Operator
With Deepthi Sigireddi, Software Engineer, PlanetScale

Vitess can be described simply as a scaling infrastructure for MySQL. Vitess started
at YouTube in 2010 when the team was struggling with daily outages due to MySQL.
A few people got together and decided that rather than fighting fires every day, they
would solve their problem from the ground up. Initially, Vitess was very customized
to YouTube’s environment. Applications were segmented into groups to run against
one database or another, with a layer in between to route queries to the right
backing database. Over time, the internal architecture became more complex—but
simpler from the application’s point of view. Vitess started with custom sharding,
which required the application to know which database to query against. Now, the
application doesn’t need to know whether there are 10 MySQL databases or 100, or
1,000. As far as the application layer is concerned, it looks like a single database.

Managing MySQL in Kubernetes Using the Vitess Operator | 125

https://oreil.ly/543Y8
https://github.com/lensapp/lens
https://k9scli.io
https://oreil.ly/i0n5S

The move toward Kubernetes started when YouTube was acquired by Google. The
mandate to use Google infrastructure included adapting Vitess to run on Borg, the
precursor to Kubernetes. With Borg, the applications had to be tolerant to being
restarted anytime, since Borg frequently reschedules components to run on different
machines, but that wasn’t something supported by MySQL. The team built in toler‐
ance for this type of automation as features in Vitess, and that’s how Vitess became
cloud native. All this sounds familiar to us now because that’s how Kubernetes oper‐
ates. When the team members at YouTube decided to make Vitess run on Kubernetes,
they were able to do the work without a lot of changes.

Before Vitess was donated to the CNCF in January 2018, there was a project called
Metacontroller, which predated the Operator SDK (see “Building Operators” on page
130). This was used to get Vitess working on Kubernetes, independent of Google’s
infrastructure. It seemed intuitive that you’d want to run Vitess using an operator,
since there was already a community-contributed Helm chart and we saw the move‐
ment in the community toward operators.

There was an early community effort by an individual Vitess contributor to write
a Kubernetes operator, but it was a pretty complex undertaking to take on alone,
so it didn’t go far. Other Vitess users such as HubSpot have built their own custom
operators, which are private since they are quite specific to their own deployments.
PlanetScale started building a Kubernetes operator for Vitess to run as a cloud service,
and once it matured, we released 90% of that code as an open source Vitess Operator.

To write an operator for an application, you need to understand both Kubernetes
and the application really well. Kubernetes moves fast, with new releases every four
months. Many features that were in alpha when we first started building our operator
are now a part of Kubernetes. Meanwhile, MySQL continues to evolve and add new
query constructs. In MySQL 8.0, a lot of new syntax was added, and maintaining an
operator requires keeping up with those changes.

To run a service in Kubernetes, you have to know the important lifecycle events and
how those disrupt availability. Vitess achieves automatic failure detection and failover
through a mixture of approaches. If your primary MySQL node is running with a
PersistentVolume that goes down, Kubernetes will restart it with a downtime of 20 or
30 seconds. This is pretty fast—maybe more than what some applications can tolerate.
We are building into Vitess the ability to detect and fail over much faster than a
Kubernetes hot restart. Vitess will detect that the primary has gone down and will fail
over to a replica that has kept up with the primary within 5 or 10 seconds. This will
greatly improve reliability.

Another area of improvement we are focused on is speeding up startup and shut‐
down. Network constraints like TCP/IP timeouts limit how quickly you can detect
failure, but MySQL startup and shutdown are not yet at the point of hitting that lower
bound. The first operator we built at PlanetScale took 10 or 20 minutes to bring up a
cluster. This was partly due to inefficiencies in the Operator SDK, and partly because
we had written a single controller with a gigantic reconcile loop. We rewrote the

126 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/5Ynco

operator to use a newer version of the Operator SDK and to have a separate controller
for each resource. This made our startups and shutdowns 20 times faster, which was
a hard requirement for providing a cloud service. Clients expect those operations to
take 10 or 15 seconds, not 2 or 3 minutes.

We also need more primitives from Kubernetes in order to continue to mature
database operators. While Kubernetes provides Deployments, ReplicaSets, and State‐
fulSets, it doesn’t yet support the concept of primary and replicas as MySQL needs.
Imagine if you could configure Kubernetes to designate a primary, and specify an
action to perform if the primary is restarted. A lot of the error-handling code
included in Vitess would actually not be required. While Kubernetes has a leader
election module, there’s no clear way to leverage this for an operator that already has
the concept of primaries and replicas. This leads to more duplicated code.

One final area of improvement is data locality. Application developers are looking
for more control over where their data is stored, and easy ways to ingest or load
data. Every organization that provides a database solution on Kubernetes should
consider providing it as a service to make it easier for developers to consume. Today
if a developer is running an application in AWS and a particular data service is not
available there, they have to consider using another cloud or building the capability
themselves. It should be really easy to create and populate a data source for an
application no matter where you run it.

Infrastructure provisioning is getting easier and easier, and long may that trend
continue. Even so, there is a lot more work to do. Those of us who get paid to work on
open source are fortunate because many developers aren’t compensated for their open
source contributions. Let’s continue to champion the benefits of working on open
source software in our organizations so we can continue to grow as a community.

A Growing Ecosystem of Operators
The operator pattern has become quite popular in the Kubernetes community, aided
in part by the development of the Operator Framework, an ecosystem for creating
and distributing operators. In this section, we’ll examine the Operator Framework
and related open source projects.

Choosing Operators
While we’ve focused in this chapter on Vitess as an example database operator, opera‐
tors are clearly relevant to all of the elements of your data stack. In all aspects of cloud
native data, we see a growing number of maturing, open source operators to use in
your deployments, and we’ll be looking at additional operators as we examine how to
run different types of data infrastructure on Kubernetes in upcoming chapters.

A Growing Ecosystem of Operators | 127

https://operatorframework.io

You should consider multiple aspects in choosing an operator. What are its features?
How much does it automate? How well supported is it? Is it proprietary or open
source? The Operator Framework provides a great resource, the Operator Hub,
which you should consider as your first stop when looking for an operator. Operator
Hub is a well-organized list of various operators that cover every aspect of cloud
native software. It does rely on maintainers to submit their operators for listing,
which means that many existing operators may not be listed.

The Operator Framework also contains the Operator Lifecycle Manager (OLM), an
operator for installing and managing other operators in your cluster. You can curate
your own custom catalog of operators that are permitted in your environment, or
use catalogs provided by others. For example, Operator Hub can itself be treated as a
catalog.

Part of the curation the Operator Hub provides is rating the capability of each
operator according to the Operator Capability Model. The levels in this capability
model are summarized in Table 5-1, with additional commentary we’ve added to
highlight considerations for database operators. The examples are not prescriptive
but indicate the type of capabilities expected at each level.

Table 5-1. Operator capability levels applied to databases

Capability level Characteristics Database operator examples Tools
Level 1:
Basic install

Installation and
configuration of
Kubernetes and
workloads

The operator uses custom resources to provide a central point of
configuration for a database cluster.
The operator deploys the database by creating resources
such as Deployments, ServiceAccounts, RoleBindings,
PersistentVolumeClaims, and Secrets, and helps initialize the
database schema.

Helm,
Ansible,
Go

Level 2:
Seamless
updates

Upgrade of the managed
workload and operator

The operator can update an existing database to a newer version
without data loss (or, hopefully, downtime).
The operator can be replaced with a newer version of itself.

Helm,
Ansible,
Go

Level 3:
Full lifecycle

Ability to create and
restore from backups,
ability to fail over or
replace portions of a
clustered application,
ability to scale the
application

The operator provides a way to create a consistent backup across
multiple data nodes and the ability to use those backups to
restore or replace failed database nodes.
The operator can respond to a configuration change to add or
remove database nodes or perhaps even datacenters.

Ansible,
Go

Level 4:
Deep insights

Providing capabilities
including alerting,
monitoring, events, or
metering

The operator monitors metrics and logging output by the
database software and uses this information to implement health
and readiness checks.
The operator pushes metrics and alerts to other infrastructure.

Ansible,
Go

128 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://operatorhub.io
https://oreil.ly/ble8P
https://oreil.ly/ble8P
https://oreil.ly/eYVEA

Capability level Characteristics Database operator examples Tools
Level 5:
Auto-pilot

Providing capabilities
including auto-scaling,
auto-healing,
auto-tuning

The operator auto-scales the number of database nodes in
the cluster up or down to meet performance requirements.
The operator might also dynamically resize PVs or change the
StorageClass used for various database nodes.
The operator automatically performs database maintenance such
as rebuilding indexes to improve slow response times.
The operator detects abnormal workload patterns and takes
action such as resharding to balance workloads.

Ansible,
Go

These levels are useful both for evaluating operators you might want to use, and
for providing targets for operator developers to aim for. They also provide an opin‐
ionated view on what Helm-based operators can accomplish, limiting them to Level
2. For full lifecycle management and automation, more direct involvement with the
Kubernetes control plane is needed. For a Level 5 operator, the goal is a complete
hands-off Deployment.

Let’s take a quick look at a few of the available operators for popular open source
databases:

Cass Operator
In 2021, several companies in the Cassandra community that had developed
their own operators came together in support of an operator built by DataStax,
known primarily by its nickname: Cass Operator. Cass Operator was inspired
by the best features of the community operators as well as DataStax experience
running Astra, a Cassandra-based database as a service (DBaaS). The operator
has been donated to the K8ssandra project, where it is part of a larger ecosystem
for deploying Cassandra on Kubernetes. We’ll take a deeper look at K8ssandra
and Cass Operator in Chapter 7.

PostgreSQL operators
Several operators are available for PostgreSQL, which is not surprising given that
it is the second most popular open source database after MySQL. Two of the
most popular operators are the Zalando Postgres Operator, and PGO (which
stands for Postgres Operator) from Crunchy Data. Read Nikolay Bogdanov’s blog
post “Comparing Kubernetes Operators for PostgreSQL” for a helpful compari‐
son of these and other operators.

MongoDB Kubernetes Operator
MongoDB is the most popular document database, beloved by developers for
its ease of use. The MongoDB Community Kubernetes Operator provides basic
support for creating and managing MongoDB ReplicaSets, scaling up and down,
and upgrades. This operator is available on GitHub but not yet listed on Operator
Hub, possibly because MongoDB also offers a separate operator for its enterprise
version.

A Growing Ecosystem of Operators | 129

https://oreil.ly/AS16G
https://oreil.ly/ueyGZ
https://k8ssandra.io
https://oreil.ly/i6Us5
https://oreil.ly/A40Qf
https://oreil.ly/AQcvB
https://oreil.ly/dAhuV

Redis Operator
Redis is an in-memory key-value store that has a broad set of use cases. Appli‐
cation developers typically use Redis as an adjunct to other data infrastructure
when ultra-low latency is required. It excels at caching, counting, and shared
data structures. The Redis Operator covers the basic install and upgrade but also
manages harder operations such as cluster failover and recovery.

As you can see, operators are available for many popular open source databases,
although it’s unfortunate that some vendors have tended to think of Kubernetes
operators primarily as a feature differentiator for paid enterprise versions.

Building Operators
While there is broad consensus in the Kubernetes community that you should use
operators for distributed data infrastructure whenever possible, there are a variety
of opinions about who exactly should be building operators. If you don’t happen
to work for a data infrastructure vendor, this can be a challenging question. Mary
Branscombe’s blog post “When to Use, and When to Avoid, the Operator Pattern”
provides some excellent questions to consider, which we’ll summarize here:

• What is the scale of the deployment? If you’re deploying only a single instance•
of the database application, building and maintaining an operator might not be
cost-effective.

• Do you have the expertise in the database? The best operators tend to be built by•
companies running databases at scale in production, including vendors that are
providing DBaaS solutions.

• Do you need higher levels of application awareness and automation, or would•
deployment with a Helm chart and standard Kubernetes resources be sufficient?

• Are you trying to make the operator manage resources that are external to•
Kubernetes? Consider a solution that runs closer to the resources being managed
with an API you can access from your Kubernetes application.

• Have you considered security implications? Since operators are extensions of the•
Kubernetes control plane, you’ll want to carefully manage what resources your
operator can access.

If you decide to write an operator, several great tools and resources are available:

Operator SDK
This software development kit, included in the Operator Framework, contains
tools to build, test, and package operators. Operator SDK uses templates to
autogenerate new operator projects and provides APIs and abstractions to sim‐
plify common aspects of building operators, especially interactions with the

130 | Chapter 5: Automating Database Management on Kubernetes with Operators

https://oreil.ly/SKLSz
https://oreil.ly/hd8FE
https://oreil.ly/HtSZt

Kubernetes API. The SDK supports the creation of operators using Go, Ansible,
or Helm.

Kubebuilder
This toolkit for building operators is managed by the Kubernetes API Machi‐
nery SIG. Similarly to Operator SDK, Kubebuilder provides tools for project
generation, testing, and publishing controllers and operators. Both Kubebuilder
and Operator SDK are built on the Kubernetes controller-runtime, a set of Go
libraries for building controllers. Wei Tei’s blog post “Kubebuilder vs. Operator
SDK” provides a concise summary of the differences between these toolkits.

Kubernetes Universal Declarative Operator (KUDO)
This operator allows you to create operators declaratively using YAML files. This
is an attractive approach for some developers as it eliminates the need to write
Go. Dmytro Vedetskyi’s blog post “How to Deploy Your First App with Kudo
Operator on K8S” provides a helpful introduction to using KUDO and discusses
some of the pros and cons of the declarative approach.

Finally, the O’Reilly books Kubernetes Operators by Jason Dobies and Joshua Wood
and Programming Kubernetes are great resources for understanding the operator
ecosystem and getting into the details of writing operators and controllers in Go.

Can One Operator Rule Them All?
With Umair Mufti, Product Manager, Pure Storage

As discussed in this chapter, the number of Kubernetes operators for databases has
been continuously growing. Database developers want their databases to run on
Kubernetes, so projects like Vitess are stepping up and developing operators to make
it easy for others. This initiative is great, but one potential drawback is that everyone
is building operators their own way and solving similar problems with different
implementations. As a result, there is no uniformity among operators for stateful
workloads.

The question those who are developing operators have to reckon with is how speci‐
alized to expect end users to be. Because of the popularity of cloud native, microser‐
vice architectures, application developers now expect polyglot persistence: to run a
relational database in addition to a graph database or a key-value store. This forces
cluster administrators to provide different types of databases while maintaining the
operational simplicity of a single platform.

No Kubernetes admin wants to maintain 10 or 15 operators on their cluster. The
point of Kubernetes is the ease of operations when deploying applications, monitor‐
ing them on day two, and making lifecycle management simpler. As soon as you have
the maintenance overhead of managing multiple operator lifecycles, you’ve already
lost. Multiply that 10 or 15 times over, and you are completely at odds with the value

A Growing Ecosystem of Operators | 131

https://book.kubebuilder.io
https://oreil.ly/XR9y4
https://oreil.ly/NKC8d
https://oreil.ly/NKC8d
https://kudo.dev
https://oreil.ly/K71fK
https://oreil.ly/K71fK
https://oreil.ly/rWIM0
https://oreil.ly/iczyv

Kubernetes provides. The only way out of this situation is to reduce the number of
operators. Could there be a single operator for all our databases or stateful workloads?
Let’s explore.

The operator pattern is simply a design pattern for running stateful workloads in
Kubernetes, just as the model–view–controller (MVC) framework is a pattern for
user-facing applications. Various web frameworks such as Angular, Vue, and React
use the MVC pattern, but they all implement the pattern in different ways, and your
code will vary based on the implementation you use. This is a familiar experience
for developers using operators today. Each operator solves the problem of running
a stateful workload in Kubernetes in a unique way, and it requires specialization to
become proficient with each operator. The irony is that if you’re running Cassandra,
Redis, or Postgres, a lot of the problems being addressed are very much the same:
cluster membership, failure detection, backup and restore, and more.

Could we actually build “one operator to rule them all”? Maybe. But perhaps what we
need is not literally one single operator, but a collection of higher-level interfaces that
operators should adhere to, so they work with multiple data service types. This would
enable administrators to choose an operator based on factors other than the vendor
or project that created it. What if you could use an operator that would manage
your Cassandra, Elasticsearch, and Kafka clusters? This is what we need to reduce
the burden on operations teams and fully realize the benefits of managing stateful
workloads on Kubernetes.

We need to build another layer of abstraction on top of the operator pattern. As a
community, we can develop a common set of custom resources, and each controller
can manage them in their own way. For example, we might define a TopologyAwareS
tatefulSet as a new CRD, or a ClusterMembership CRD that describes how a node
joins a cluster. Instead of Elasticsearch developers and Cassandra developers creating
separate definitions of a server group or topology, we could all agree that a distributed
database has a concept of topology, agree on a CRD, and controllers can implement
the specified behavior as needed.

The ideal end-state is a world with multiple implementations that adhere to a com‐
mon standard. Kubernetes itself has a specification, and each Kubernetes distribution
has to provide certain APIs to be considered a valid distribution. Users can choose
which operators to use in the same way, knowing that they can expect a baseline
standard while applying other criteria.

Kubernetes still shows signs that it was born of a stateless world, but there’s an excit‐
ing future for stateful workloads on Kubernetes. We are very much in that “Crossing
the Chasm” moment and still just hitting the inflection point with stateful workloads.
With more advanced operators, we’ll no longer be working in silos, solving the same
problems over and over again. Then we can use our collective talents and skills to
solve bigger and higher-level problems.

132 | Chapter 5: Automating Database Management on Kubernetes with Operators

As you can see, the state of the art in Kubernetes operators is continuing to mature.
Whether the goal is to build a unified operator or just to make it easier to build
database-specific operators, it’s clear that great progress can be made as multiple
communities begin to collaborate on common CRDs to address problems like cluster
membership, topology awareness, and leader election.

Summary
In this chapter, you’ve learned about several ways of extending the Kubernetes control
plane, especially operators and custom resources. The operator pattern provides
the critical breakthrough that enables us to simplify database operations in Kuber‐
netes through automation. While you should definitely be using operators to run
distributed databases in Kubernetes, think carefully before starting to write your
own operator. If building an operator is the right course for you, there are plenty
of resources and frameworks to help you along the way. There are certainly ways in
which Kubernetes itself could improve to make writing operators easier, as you’ve
learned from the experts we spoke to in this chapter.

While we’ve spent the past couple of chapters focusing primarily on running data‐
bases on Kubernetes, let’s expand our focus to consider how those databases interact
with other infrastructure.

Summary | 133

CHAPTER 6

Integrating Data Infrastructure
in a Kubernetes Stack

In this book, we are illuminating a future of modern, cloud native applications
that run on Kubernetes. Up until this point, we’ve noted that historically, data has
been one of the hardest parts of making this a reality. In previous chapters, we’ve
introduced the primitives Kubernetes provides for managing compute, network, and
storage (Chapter 2) resources, and considered how databases (Chapter 3) can be
deployed on Kubernetes using these resources. We’ve also examined the automation
of infrastructure using controllers and the operator pattern (Chapter 4).

Now let’s expand our focus to consider how data infrastructure fits into your
overall application architecture in Kubernetes. In this chapter, we’ll explore how
to assemble the building blocks discussed in previous chapters into integrated
data infrastructure stacks that are easy to deploy and tailor to the unique needs
of each application. These stacks represent a step toward the vision of the virtual
datacenter we introduced in Chapter 1. To learn the considerations involved in build‐
ing and using these larger assemblies, let’s take an in-depth look at K8ssandra. This
open source project provides an integrated data stack based on Apache Cassandra, a
database we first discussed in “Running Apache Cassandra on Kubernetes” on page
65.

K8ssandra: Production-Ready Cassandra on Kubernetes
To set the context, let’s consider some of the practical challenges of moving
application workloads into Kubernetes. As organizations have begun to migrate
existing applications to Kubernetes and create new cloud native applications
in Kubernetes, modernizing the data tier is a step that is often deferred. Whatever the
causes of these delays—the belief that Kubernetes is not ready for stateful workloads,

135

https://k8ssandra.io

a lack of development resources, or other factors—the result has been mismatched
architectures in which applications are running in Kubernetes with databases and
other data infrastructure running externally. This leads to a division of focus for
developers and SREs that can limit productivity. It’s also common to see distinct
toolsets for monitoring applications and database infrastructure, which increases
cloud computing costs.

This adoption challenge became evident in the Cassandra community. Despite the
growing collaboration and consensus around building a single Cassandra operator
as discussed in Chapter 5, developers were still confronted with key questions about
how the database and operator would fit in the larger application context:

• How can you have an integrated view of the health of your entire stack, including•
both applications and data?

• How can you tailor the automation of installation, upgrades, and other opera‐•
tional tasks in a Kubernetes native way that fits the way we manage your
Datacenters?

To help address these questions, John Sanda and a team of engineers at DataStax
launched an open source project called K8ssandra with the goal of providing
a production-ready deployment of Cassandra that embodies best practices for
running Cassandra in Kubernetes. K8ssandra provides custom resources that help
manage tasks including cluster deployment, upgrades, scaling up and down, data
backup and restore, and more. You can read more about the motivations for the
project in Jeff Carpenter’s blog post “Why K8ssandra?”.

K8ssandra Architecture
K8ssandra is deployed in units known as clusters, which is similar terminology to
that used by Kubernetes and Cassandra. A K8ssandra cluster includes a Cassandra
cluster along with additional components depicted in Figure 6-1 to provide a full data
management ecosystem. Let’s consider these in roughly clockwise order starting from
the top center:

Cass Operator
A Kubernetes operator first introduced in Chapter 5. It manages the lifecycle of
Cassandra nodes on Kubernetes, including provisioning new nodes and storage,
and scaling up and down.

Cassandra Reaper
This manages the details of repairing Cassandra nodes in order to maintain high
data consistency.

136 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/dB6mJ

Cassandra Medusa
Provides backup and restore for data stored in Cassandra.

Prometheus and Grafana
Used for the collection and visualization of metrics.

Stargate
A data gateway that provides API access to client applications as an alternative to
CQL.

K8ssandra Operator
Orchestrates all of the other components, including multicluster support for
managing Cassandra clusters that span multiple Kubernetes clusters.

Figure 6-1. K8ssandra architecture

In the following sections, we’ll take a look at each component of the K8ssandra
project to understand the role that it plays within the architecture and its relationship
to other components.

Installing the K8ssandra Operator
Let’s dive in with some hands-on experience of installing K8ssandra. To get a basic
installation of K8ssandra running that fully demonstrates the power of the operator,
you’ll need a Kubernetes cluster with several Worker Nodes.

K8ssandra: Production-Ready Cassandra on Kubernetes | 137

To make the deployment simpler, the K8ssandra team has provided scripts to
automate the process of creating Kubernetes clusters and then deploying the operator
to these clusters. These scripts use kind clusters for simplicity, so you’ll want to make
sure you have this installed before starting.

Instructions for installing on various clouds are also available on the K8ssandra
website. The instructions we provide here are based on an installation guide in the
K8ssandra Operator repository.

K8ssandra 2.0 Release Status

This chapter focuses on the K8ssandra 2.0 release, including the
K8ssandra Operator. At the time of writing, K8ssandra 2.0 is still
in beta status. As K8ssandra 2.0 moves toward a full GA release,
the instructions on the “Get Started” section of the K8ssandra
website will be updated to reference the new version.

First, start by cloning the K8ssandra operator repository from GitHub:

git clone https://github.com/k8ssandra/k8ssandra-operator.git

Next, you’ll want to use the provided Makefile to create a Kubernetes cluster and
deploy the K8ssandra Operator into it (this assumes you have make installed):

cd k8ssandra-operator
make single-up

If you examine the Makefile, you’ll notice the operator is installed using Kustomize,
which we discussed in “Additional Deployment Tools: Kustomize and Skaffold” on
page 94. The target you just executed creates a kind cluster with four Worker Nodes
and changes your current context to point to that cluster, as you can see by running
the following:

% kubectl config current-context
kind-k8ssandra-0
% kubectl get nodes
NAME STATUS ROLES AGE VERSION
k8ssandra-0-control-plane Ready control-plane,master 6m45s v1.22.4
k8ssandra-0-worker Ready <none> 6m13s v1.22.4
k8ssandra-0-worker2 Ready <none> 6m13s v1.22.4
k8ssandra-0-worker3 Ready <none> 6m13s v1.22.4
k8ssandra-0-worker4 Ready <none> 6m13s v1.22.4

138 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://kind.sigs.k8s.io
https://oreil.ly/4z2oH
https://oreil.ly/kgeWY
https://oreil.ly/nT1n5
https://oreil.ly/nT1n5

Now examine the list of CRDs that have been created:

% kubectl get crd
NAME CREATED AT
cassandrabackups.medusa.k8ssandra.io 2022-02-05T17:31:35Z
cassandradatacenters.cassandra.datastax.com 2022-02-05T17:31:35Z
cassandrarestores.medusa.k8ssandra.io 2022-02-05T17:31:35Z
cassandratasks.control.k8ssandra.io 2022-02-05T17:31:36Z
certificaterequests.cert-manager.io 2022-02-05T17:31:16Z
certificates.cert-manager.io 2022-02-05T17:31:16Z
challenges.acme.cert-manager.io 2022-02-05T17:31:16Z
clientconfigs.config.k8ssandra.io 2022-02-05T17:31:36Z
clusterissuers.cert-manager.io 2022-02-05T17:31:17Z
issuers.cert-manager.io 2022-02-05T17:31:17Z
k8ssandraclusters.k8ssandra.io 2022-02-05T17:31:36Z
orders.acme.cert-manager.io 2022-02-05T17:31:17Z
reapers.reaper.k8ssandra.io 2022-02-05T17:31:36Z
replicatedsecrets.replication.k8ssandra.io 2022-02-05T17:31:36Z
stargates.stargate.k8ssandra.io 2022-02-05T17:31:36Z

As you can see, several CRDs are associated with the cert-manager and K8ssandra.
There is also the CassandraDatacenter CRD used by Cass Operator. The K8ssandra
and Cass Operator CRDs are all Namespaced, which you can verify using the
kubectl api-resources command, meaning that resources created according to
these definitions are assigned to a specific Namespace. That command will also
show you the acceptable abbreviations for each resource type (for example, k8c for
k8ssandracluster).

Next, you can examine the contents that have been installed within the kind cluster.
If you list the Namespaces using kubectl get ns, you’ll note two new Namespaces:
cert-manager and k8ssandra-operator. As you may suspect, K8ssandra is using
the same cert-manager project as Pulsar, as described in “Securing Communications
by Default with cert-manager” on page 207. Let’s examine the contents of the
k8ssandra-operator Namespace, which are summarized in Figure 6-2 along with
related K8ssandra CRDs.

Examine the workloads and you’ll notice that two Deployments have been created:
one for the K8ssandra Operator and one for Cass Operator. Take a look at the
K8ssandra Operator source code, and you’ll see that it contains multiple controllers,
while the Cass Operator consists of a single controller. This packaging reflects the
fact that Cass Operator is an independent project which can be used by itself without
having to adopt the entire K8ssandra framework—otherwise, it could have been
included as a controller within the K8ssandra Operator.

K8ssandra: Production-Ready Cassandra on Kubernetes | 139

Figure 6-2. K8ssandra Operator architecture

Table 6-1 describes the mapping of these various controllers to the key resources with
which they interact.

Table 6-1. Mapping K8ssandra CRDs to controllers

Operator Controller Key custom resources
K8ssandra Operator K8ssandra controller K8ssandraCluster, CassandraDatacenter

Medusa controller CassandraBackup, CassandraRestore
Reaper controller Reaper

Replication controller ClientConfig, ReplicatedSecret
Stargate controller Stargate

Cass Operator Cass Operator controller manager CassandraDatacenter

We’ll introduce each K8ssandra and Cass Operator CRD in more detail in the followi‐
ing sections:

140 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

Creating a K8ssandraCluster
Once you’ve installed the K8ssandra Operator, the next step is to create a K8ssan‐
draCluster. The source code used in this section is available in the “Vitess Operator
Example” section of the book’s repository, based on samples available in the K8ssan‐
dra Operator GitHub repo. First, have a look at the k8ssandra-cluster.yaml file:

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
 name: demo
spec:
 cassandra:
 cluster: demo
 serverVersion: "4.0.1"
 datacenters:
 - metadata:
 name: dc1
 size: 3
 storageConfig:
 cassandraDataVolumeClaimSpec:
 storageClassName: standard
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi
 config:
 jvmOptions:
 heapSize: 512M
 stargate:
 size: 1
 heapSize: 256M

This code specifies a K8ssandraCluster resource consisting of a single Datacenter
dc1 running three nodes of Cassandra 4.0.1, where the Pod specification for each
Cassandra node requests 1 GB of storage using a PersistentVolumeClaim that refer‐
ences the standard StorageClass. This configuration also includes a single Stargate
node to provide API access to the Cassandra cluster. This is a minimal configuration
that accepts the chart defaults for most of the other components. Create the demo
K8ssandraCluster in the k8ssandra-operator Namespace with this command:

% kubectl apply -f k8ssandra-cluster.yaml -n k8ssandra-operator
k8ssandracluster.k8ssandra.io/demo created

Once the command completes, you can check on the installation of the K8ssan‐
draCluster using commands such as kubectl get k8ssandraclusters (or kubectl
get k8c for short). Figure 6-3 depicts some of the key compute, network, and
storage resources that the operator built on your behalf when you created the demo
K8ssandraCluster.

K8ssandra: Production-Ready Cassandra on Kubernetes | 141

https://oreil.ly/1n3k7
https://oreil.ly/1n3k7
https://oreil.ly/5WxRO
https://oreil.ly/5WxRO

Figure 6-3. A simple K8ssandraCluster

Here are some key items to note:

• A single StatefulSet has been created to represent the Cassandra Datacenter dc1,•
with three Pods containing the replicas you specified. As you’ll learn in the next
section, K8ssandra uses a CassandraDatacenter CRD to manage this StatefulSet
via the Cass Operator.

• While the figure shows a single Service demo-dc1-service exposing access to•
the Cassandra cluster as a single endpoint, this is a simplification. You will find
multiple Services configured to provide access for various clients.

• There is a Deployment managing a single Stargate Pod, as well as Services that•
provide client endpoints to the various API services provided by Stargate. This is
another simplification, and we’ll explore this part of configuration in more detail
in “Enabling Developer Productivity with Stargate APIs” on page 147.

• Similar to examples of infrastructure we’ve shown in previous chapters, the•
K8ssandra Operator also creates additional supporting security resources such as
ServiceAccounts, Roles, and RoleBindings.

142 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

Once you have a K8ssandraCluster created, you can point client applications at the
Cassandra interfaces and Stargate APIs, and perform cluster maintenance operations.
You can remove a K8ssandraCluster just by deleting its resource, but you won’t
want to do that yet as we have a lot more to explore! We’ll describe several of these
interactions as we examine each of the K8ssandra components in more detail. Along
the way, we’ll make sure to note some of the interesting design choices made by
contributors to K8ssandra and related projects in terms of how they use Kubernetes
resources and how they adapt data infrastructure that predates Kubernetes into the
Kubernetes way of doing things.

StackGres: An Integrated Kubernetes Stack for Postgres

The K8ssandra project is not the only instance of an integrated data
stack that runs on Kubernetes. Another example can be found in
StackGres, a project managed by OnGres. StackGres uses Patroni
to support clustered, highly available Postgres deployments and
adds automated backup functionality. StackGres supports integra‐
tion with Prometheus and Grafana for metrics aggregation and
visualization, along with an optional Envoy proxy for getting more
fine-grained metrics at the protocol level. StackGres is composed
of open source components and uses the AGPLv3 License for its
community edition.

Managing Cassandra in Kubernetes with Cass Operator
Cass Operator is the shorthand name for the DataStax Kubernetes Operator for
Apache Cassandra. This open source project available on GitHub was brought under
the umbrella of the K8ssandra project in 2021, replacing its previous home under the
DataStax GitHub organization.

Cass Operator is a key part of K8ssandra, since a Cassandra cluster is the basic
data infrastructure around which all the other infrastructure elements and tools are
added. However, Cass Operator was developed before K8ssandra and will continue
to exist as a separately deployable project. This is helpful since not every capability
of Cass Operator is exposed via K8ssandra, especially more advanced Cassandra
configuration options. Cass Operator is listed as its own project in Operator Hub and
can be installed via Kustomize.

Cass Operator provides a mapping of Cassandra’s topology concepts including clus‐
ters, Datacenters, racks, and nodes onto Kubernetes resources. The key construct is
the CassandraDatacenter CRD, which represents a Datacenter within the topology
of a Cassandra cluster. (Reference Chapter 3 if you need a refresher on Cassandra
topology.)

Managing Cassandra in Kubernetes with Cass Operator | 143

https://stackgres.io
https://github.com/zalando/patroni
https://www.gnu.org/licenses/agpl-3.0.en.html
https://oreil.ly/xWjZr
https://oreil.ly/JAF3Y
https://oreil.ly/gPtl3

When you created a K8ssandraCluster resource in the previous section, the K8ssan‐
dra Operator created a single CassandraDatacenter resource, which would have
looked something like this:

apiVersion: cassandra.datastax.com/v1beta1
kind: CassandraDatacenter
metadata:
 name: dc1
spec:
 clusterName: demo
 serverType: cassandra
 serverVersion: 4.0.1
 size: 3
 racks:
 - name: default

Since you didn’t specify a rack in the K8ssandraCluster definition, K8ssandra inter‐
prets this as a single rack named default. By creating the CassandraDatacenter,
K8ssandra Operator is delegating the operation of the Cassandra nodes in this Data‐
center to Cass Operator.

Cass Operator and Multiple Datacenters

You may be wondering why Cass Operator does not define a
CRD representing a Cassandra cluster. From the perspective of the
Cass Operator, the Cassandra cluster is basically just a piece of
metadata—the CassandraDatacenter’s clusterName—rather than
an actual resource. This reflects the convention that Cassandra
clusters used in production systems are typically deployed across
multiple physical datacenters, which is beyond the scope of a
Kubernetes cluster.
While you can certainly create multiple CassandraDatacenters and
link them together using the same clusterName, they must be
in the same Kuberneters cluster for Cass Operator to be able to
manage them. It’s also recommended to use a separate Namespace
to install a dedicated instance of Cass Operator to manage each
cluster. You’ll see how K8ssandra supports the ability to create
Cassandra clusters that span multiple physical datacenters (and
Kubernetes clusters) in multicluster topologies.

When Cass Operator is notified by the API server of the creation of the Cassandra‐
Datacenter resource, it creates resources used to implement the datacenter, including
a StatefulSet to manage the nodes in each rack, as well as various Services and
security-related resources. The StatefulSet will start the requested number of Pods in
parallel. This brings up a situation in which Cass Operator provides logic to adapt
between how Cassandra and Kubernetes operate.

144 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

If you have worked with Cassandra previously, you may be aware that the best
practice for adding nodes to a cluster is to do so one one at a time, to simplify the
process of a node joining the cluster. This process, called bootstrapping, includes the
step of negotiating which data the node will be responsible for, and may include
streaming data from other nodes to the new node. However, since the StatefulSet is
not aware of these constraints, how can adding multiple nodes to a new or existing
cluster one at a time be accomplished?

The answer lies in the composition of the Pod specification that Cass Operator passes
to the StatefulSet, which is then used to create each Cassandra node, as shown in
Figure 6-4.

Figure 6-4. Cass Operator interactions with Cassandra Pods

Cass Operator deploys a custom image of Cassandra in each Cassandra Pod that it
manages. The Pod specification includes at least two containers: an init container
called server-config-init and a Cassandra container called cassandra.

As an init container, server-config-init is started before the Cassandra container.
It’s responsible for generating the cassandra.yaml configuration file based on the
selected configuration options for the CassandraDatacenter. You can specify addi‐
tional configuration values using the config section of the CassandraDatacenter
resource, as described in the K8ssandra documentation.

Managing Cassandra in Kubernetes with Cass Operator | 145

https://oreil.ly/SlN0F

Additional Sidecar Containers in Cassandra Pods

As you’ll learn in the following sections, the Cassandra Pod may
have additional sidecar containers when deployed in a K8ssan‐
draCluster, depending on which of the additional K8ssandra com‐
ponents you have enabled. For right now, though, we are focusing
on the most basic installation.

The cassandra container actually contains two separate processes: the daemon that
runs the Cassandra instance and a Management API. This goes somewhat against the
traditional best practice of running a single process per container, but there is a good
reason for this exception.

Cassandra’s management interface is exposed via the Java Management Extensions
(JMX). While this was a legitimate design choice for a Java-based application like
Cassandra when the project was just starting out, JMX has fallen out of favor because
of its complexity and security issues. While there has been some progress toward an
alternate management interface for Cassandra, the work is not yet complete, so the
developers of Cass Operator decided to integrate another open source project, the
Management API for Apache Cassandra.

The Management API project provides a RESTful API that translates HTTP-based
invocations into calls on Cassandra’s legacy JMX interface. By running the Manage‐
ment API inside the Cassandra container, we avoid having to expose the JMX port
outside of the Cassandra containers. This is an instance of a pattern frequently used
in cloud native architectures to adapt custom protocols into HTTP-based interfaces,
for which there is much better support for routing and security in ingress controllers.

Cass Operator discovers and connects to the Management API on each Cassandra
Pod in order to perform management operations that are not related to Kubernetes.
When adding new nodes, this involves the simple action of using the Management
API to verify that the node is up and running successfully and updating the Cassan‐
draDatacenter’s status accordingly. This sequence is described in more detail in the
K8ssandra documentation.

Customizing the Cassandra Image Used by Cass Operator

The Management API project provides images for recent Cassan‐
dra versions in the 3.x and 4.x series, which are available on Docker
Hub. While it is possible to override the Cassandra image that
Cass Operator uses with one of your own, Cass Operator does
require that the Management API is available on each Cassandra
Pod. If you need to build your own custom image including the
Management API, you could use the Dockerfiles and supporting
scripts from the GitHub repository as a starting point.

146 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/1XIPi
https://oreil.ly/T7io1
https://oreil.ly/FQa3q
https://oreil.ly/FQa3q
https://oreil.ly/GKRP1

While this section focused largely on the startup and scaling of Cassandra clusters
just described, Cass Operator provides several features for deploying and managing
Cassandra clusters:

Topology management
Cass Operator uses Kubernetes affinity principles to manage the placement of
Cassandra nodes (Pods) across Kubernetes Worker Nodes to maximize availabil‐
ity of your data.

Scaling down
Just as nodes are added one at a time to scale up, Cass Operator manages scaling
down one node at a time.

Replacing nodes
If a Cassandra node is lost because it crashes or the Worker Node on which it is
running goes down, Cass Operator relies on the StatefulSet to replace the node
and bind the new node to the appropriate PersistentVolumeClaim.

Upgrading images
Cass Operator also leverages the capabilities of StatefulSet to perform rolling
upgrades of the images used by the Cassandra Pods.

Managing seed nodes
Cass Operator creates Kubernetes Services to expose the seed nodes in each
Datacenter according to Cassandra’s recommended conventions of one seed node
per rack, for a minimum of three per Datacenter.

You can read about these and other features in the Cass Operator documentation.

Enabling Developer Productivity with Stargate APIs
Our focus so far in this book has been primarily on deployment of data infrastructure
such as databases in Kubernetes, more than on the way that infrastructure is used
in cloud native applications. The usage of Stargate in K8ssandra gives us a good
opportunity to have that discussion.

In many organizations, there is an ongoing conversation about the pros and cons
of direct application access to databases versus abstracting the details of database
interactions. This debate occurs especially frequently in larger organizations that
divide responsibilities between application development teams and teams that man‐
age platforms including data infrastructure. However, it can also be observed in
organizations that employ modern practices including DevOps and microservice
architectures, where each microservice may have a different data store behind it.

Enabling Developer Productivity with Stargate APIs | 147

https://oreil.ly/UafkF
https://stargate.io

The idea of providing abstractions over direct database access has taken many forms
over the years. Even in the days of monolithic client-server applications, it was
common to use stored procedures or isolate data access and complex query logic
behind object-relational mapping tools such as Hibernate, or to use patterns like data
access objects (DAOs).

More recently, as the software industry has moved toward service oriented archi‐
tecture (SOA) and microservices, similar patterns for abstracting data access have
appeared. As described in Jeff ’s article “Data Services for the Masses”, many teams
have found themselves creating a layer of microservices in their architecture dedica‐
ted to data access, providing create, read, update, and delete (CRUD) operations on
specific data types or entities. These services abstract the details of interacting with
a specific database backend, and if well executed and maintained, can help increase
developer productivity and facilitate migration to a different database when needed.

The Stargate project was born out of the realization that multiple teams were building
very similar abstraction layers to provide data access via APIs. The goal of the
Stargate project is to provide an open source data API gateway—a common set of
APIs for data access to help eliminate the need for teams to develop and maintain
their own custom API layers. While the initial implementation of Stargate is based on
Cassandra, the goal of the project is to support multiple database backends, and even
other types of data infrastructure such as caches and streaming.

With Cassandra used as the backend data store, the Stargate architecture can be
described as having three layers, as shown in Figure 6-5.

Figure 6-5. Stargate conceptual architecture with Cassandra

148 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/u6K58

The API layer is the outermost layer, consisting of services that implement various
APIs on top of the underlying Cassandra cluster. Available APIs include a REST API,
a Document API that provides access to JSON documents over HTTP, a GraphQL
API, and a gRPC API. The routing layer (or coordination layer) consists of a set
of nodes that act as Cassandra nodes, but perform only routing of queries, not
data storage. The storage layer consists of a traditional Cassandra cluster, which can
currently be Cassandra 3.11, Cassandra 4.0, or DataStax Enterprise 6.8.

One of the key benefits of this architecture is that it recognizes the separation of
concerns for managing usage of compute and storage resources and provides the
ability to scale this usage independently based on the needs of client applications:

• The number of storage nodes can be scaled up or down to provide the storage•
capacity required by the application.

• The number of coordinator nodes and API instances can be scaled up or down to•
match the application’s read and write load and optimize throughput.

• APIs that are not used by the application can be scaled to zero (disabled) to•
reduce resource consumption.

K8ssandra supports the provision of Stargate on top of an underlying Cassandra
cluster via the Stargate CRD. The CassandraDatacenter deployed by Cass Operator
serves as the storage layer, and the Stargate CRD specifies the configuration of the
routing and API layers. An example configuration is shown in Figure 6-6.

Figure 6-6. Stargate deployment on Kubernetes

Enabling Developer Productivity with Stargate APIs | 149

https://oreil.ly/qTEY6
https://oreil.ly/ekhlV
https://oreil.ly/BescX
https://oreil.ly/BescX
https://oreil.ly/k2fNY

The installation includes a Deployment to manage the coordinator nodes, and a
Service to provide access to the Bridge API, a private gRPC interface exposed on
the coordinator nodes that can be used to create new API implementations. See the
Stargate v2 design for more details on the Bridge API. There is also a Deployment for
each of the APIs that is enabled in the installation, along with a Service to provide
access to client applications.

As you can see, the Stargate project provides a promising framework for extending
your data infrastructure with developer-friendly APIs that can scale along with the
underlying database.

Unified Monitoring Infrastructure with
Prometheus and Grafana
Now that we’ve considered the addition of infrastructure that makes life easier for
application developers, let’s look at some of the more operations-focused aspects of
integrating data infrastructure in a Kubernetes stack. We’ll start with monitoring.

Observability is a key attribute of any application deployed on Kubernetes, since it
has implications for your awareness of its availability, performance, and cost. Your
goal should be to have an integrated view across both your application and the
infrastructure it depends on. Observability is often described as consisting of three
types of data: metrics, logs, and tracing. Kubernetes itself provides capabilities for
logging as well as associating events with resources, and you’ve already learned how
the Cass Operator facilitates the collection of logs from Cassandra nodes.

In this section, we’ll focus on how K8ssandra incorporates the Prometheus/Grafana
stack, which provides metrics. Prometheus is a popular open source monitoring
platform. It supports a variety of interfaces for collecting data from applications and
services and stores them in a time series database which can be queried efficiently
using the Prometheus Query Language (PromQL). It also includes an Alertmanager
which generates alerts and other notifications based on metric thresholds.

While previous releases of K8ssandra in the 1.x series incorporated the Prometheus
stack as part of a K8ssandra, K8ssandra 2.x provides the capability to integrate with
an existing Prometheus installation.

One easy way to install the Prometheus Operator is to use kube-prometheus, a
repository provided as part of the Prometheus Operator project. Kube-prometheus is
intended as a comprehensive monitoring stack for Kubernetes including the control
plane and applications. You can clone this repository and use the library of manifests
(YAML files) that it contains to install the integrated stack of components shown in
Figure 6-7.

150 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/6ct5m
https://oreil.ly/tzDmJ

Figure 6-7. Components of the kube-prometheus stack

These components include the following:

Prometheus Operator
The operator, which is set apart in the figure, manages the other components.

Prometheus
The metrics database is run in a high-availability configuration managed via a
StatefulSet. Prometheus stores data using a time series database with a backing
PersistentVolume.

Node exporter
The node exporter runs on each Kubernetes Worker Node, allowing Prometheus
to pull operating system metrics via HTTP.

Client library
Applications can embed a Prometheus client library, which allows Prometheus to
pull metrics via HTTP.

Alert manager
This can be configured to generate alerts based on thresholds for specific
metrics for delivery via email or third-party tools such as PagerDuty. The
kube-prometheus stack comes with built-in alerts for the Kubernetes cluster;
application-specific alerts can also be added.

Grafana
This is deployed to provide charts that are used to display metrics to human
operators. Grafana uses PromQL to access metrics from Prometheus, and this
interface is available to other clients as well.

Unified Monitoring Infrastructure with Prometheus and Grafana | 151

https://oreil.ly/Yt0YO

While not shown in the figure, the stack also includes the Prometheus Adapter for
Kubernetes Metrics APIs, an optional component that exposes metrics collected by
Prometheus to the Kubernetes control plane so that they can be used to auto-scale
applications.

Connecting K8ssandra with Prometheus can be accomplished in a few quick steps.
The instructions in the K8ssandra documentation walk you through installing the
Prometheus Operator using kube-prometheus if you do not have it already. Since
kube-prometheus installs Prometheus Operator in its own Namespace, you’ll want to
make sure the operator has permissions to manage resources in other Namespaces.

To integrate K8ssandra with Prometheus, you set attributes on your K8ssandraClus‐
ter resource to enable monitoring on Cassandra and Stargate nodes. For example,
you could do something like the following to enable monitoring for nodes in all
Datacenters in the cluster:

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
 name: demo
spec:
 cassandra:
 datacenters:
 ...
 telemetry:
 prometheus:
 enabled: true
 stargate:
 telemetry:
 prometheus:
 enabled: true

It’s also possible to selectively enable monitoring on individual datacenters.

Let’s take a look at how the integration works. First, let’s consider how the Cassandra
nodes expose metrics. As discussed in “Managing Cassandra in Kubernetes with Cass
Operator” on page 143, Cassandra exposes management capabilities via JMX, and
this includes metrics reporting. The Metric Collector for Apache Cassandra (MCAC)
is an open source project that exposes metrics so that they can be accessed by Prome‐
theus or other backends that use the Prometheus protocol via HTTP. K8ssandra and
Cass Operator use a Cassandra Docker image that includes MCAC as well as the
Management API as additional processes that run in the Cassandra container. This
configuration is shown on the left side of Figure 6-8.

152 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/g033n
https://oreil.ly/g033n
https://oreil.ly/UOt4t
https://oreil.ly/CHNMQ

Figure 6-8. Monitoring Cassandra with the kube-prometheus stack

The right side of Figure 6-8 shows how Prometheus and Grafana are configured
to consume and expose the Cassandra metrics. The K8ssandra Operator creates
ServiceMonitor resources for each CassandraDatacenter for which monitoring has
been enabled. The ServiceMonitor, a CRD defined by the Prometheus Operator,
contains configuration details describing how to collect metrics from a set of Pods,
including the following:

• A selector referencing the name of a label which identifies the Pods•
• Connection information such as the scheme (protocol), port, and path to use to•

gather metrics from each Pod
• The interval at which metrics should be pulled•
• Optional metricRelabelings, which are instructions that indicate any desired•

renaming of metrics, or even indicate metrics that should be dropped and not
ingested by Prometheus

Unified Monitoring Infrastructure with Prometheus and Grafana | 153

K8ssandra creates separate ServiceMonitor instances for Cassandra and Stargate
nodes, since the metrics exposed are slightly different. To observe the ServiceMoni‐
tors deployed in your cluster, you can execute a command such as kubectl get
servicemonitors -n monitoring.

Prometheus provides access to its metrics to Grafana and other tools via a PromQL
endpoint exposed as a Kubernetes service. The kube-prometheus installation config‐
ures an instance of Grafana to connect to Prometheus using an instance of the Gra‐
fana Datasource CRD. Grafana accepts dashboards defined using YAML files, which
you can provide as ConfigMaps. See the K8ssandra documentation for guidance
on loading dashboard definitions that display Cassandra and Stargate metrics. You
may also wish to create dashboards that display your application metrics alongside
the data tier metrics provided by K8ssandra for an integrated view of application
performance.

As you can see, kube-prometheus provides a comprehensive and extensible moni‐
toring stack for Kubernetes clusters, much as K8ssandra provides a stack for data
management. The integration of K8ssandra with kube-prometheus is a great example
of how you can assemble integrated stacks of Kubernetes resources to form even
more powerful applications.

Performing Repairs with Cassandra Reaper
As a NoSQL database, Cassandra emphasizes high performance (especially for writes)
and high availability by default. If you’re familiar with the CAP theorem, you’ll
understand that this means that sometimes Cassandra will temporarily sacrifice
consistency of data across nodes in order to deliver this high performance and
high availability at scale, an approach known as eventual consistency. Cassandra does
provide the ability to tune the amount of consistency to your needs via options for
specifying replication strategies and the consistency level required per query. Users
and administrators should be aware of these options and their behavior in order to
use Cassandra effectively.

Cassandra has multiple built-in “anti-entropy” mechanisms such as hinted handoff
and repair that help maintain consistency of data between nodes over time. Repair
is a background process by which a node compares a portion of the data it owns
with the latest contents of other nodes that are also responsible for that data. While
these checks can be somewhat optimized through the use of checksums, repair can
still be a performance-intensive process and is best performed when a cluster is under
reduced or off-peak load. Combined with the fact that multiple options are available,
including full and incremental repairs, executing repairs has traditionally required
some tailoring for each cluster. It also has tended to be a manual process that was
unfortunately frequently neglected by some Cassandra cluster administrators.

154 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/vCfmR

More Detail on Repairs in Cassandra

For a deeper treatment of repair, see Cassandra: The Definitive
Guide, where repair concepts and the available options are
described in Chapters 6 and 12, respectively.

Cassandra Reaper was created to take the difficulty out of executing repairs on Cas‐
sandra clusters and optimize repair performance to minimize the impact of running
repairs on heavily used clusters. Reaper was created by Spotify and enhanced by The
Last Pickle, which currently manages the project on GitHub. Reaper exposes a REST‐
ful API for configuring repair schedules for one or more Cassandra clusters, and
also provides a command-line tool and web interface which guides administrators
through the process of creating schedules.

K8ssandra provides the option to incorporate an instance of Cassandra Reaper as
part of a K8ssandraCluster. The K8ssandra Operator includes a Reaper controller that
is responsible for managing the local Cassandra Reaper manager process through its
associated Reaper CRD. By default, enabling Reaper in a K8ssandraCluster will cause
an instance of Reaper to be installed in each Kubernetes cluster represented in the
installation, but you can also use a single instance of Reaper to manage repairs across
multiple Datacenters, or even across multiple Cassandra clusters, provided they are
accessible via the network.

How Important Is It to Be Kubernetes Native?
K8ssandra’s usage of Reaper is an example of the trade-offs involved in building more
complex stacks of data infrastructure. For example, a more Kubernetes native design
for the Reaper manager might involve factoring out each repair task into a Kubernetes
CronJob that could be scheduled alongside the associated CassandraDatacenter, thus
making more use of Kubernetes built-in resources. For now, the K8ssandra project
has made the choice to integrate Reaper as is.

We saw another example of this “wrap versus rewrite” type of decision in Chap‐
ter 5, where the Vitess Operator reuses the Vitess control daemon vtctld and its
vtctlclient as is. In both of these examples, the project developers have made
pragmatic choices to do initial deployments that do “just enough” to port existing
infrastructure to run in Kubernetes, while leaving room for more Kubernetes native
approaches in the future. In Chapter 7, we’ll examine what it looks like to start with a
Kubernetes native approach from scratch on new infrastructure projects.

Performing Repairs with Cassandra Reaper | 155

https://learning.oreilly.com/library/view/cassandra-the-definitive/9781492097136
https://learning.oreilly.com/library/view/cassandra-the-definitive/9781492097136
http://cassandra-reaper.io
https://oreil.ly/2MttB

Backing Up and Restoring Data with Cassandra Medusa
Managing backups is an important part of maintaining high availability and disaster
recovery planning for any system that stores data. Cassandra supports both full
and differential backups by creating hard links to the SSTable files it uses for data
persistence. Cassandra itself does not take responsibility for copying the SSTable files
to backup storage. Instead, this is left to the user. Similarly, recovering from backup
involves copying the SSTable files to the Cassandra node where the data is to be
reloaded; then Cassandra can be pointed to the local files to restore their contents.

Cassandra’s backup and restore operations are traditionally executed on individual
nodes using nodetool, a command-line tool that leverages Cassandra’s JMX interface.
Cassandra Medusa is an open source command-line tool created by Spotify and
The Last Pickle that executes nodetool commands to perform backups, including
synchronization of backups across multiple nodes. Medusa supports Amazon S3,
Google Cloud Storage (GCS), Azure Storage, and S3-compatible storage such as
MinIO and Ceph Object Gateway, and can be extended to support other storage
providers via the Apache Libcloud project.

Medusa can restore either individual nodes to support fast replacement of a downed
node, or entire clusters in a disaster recovery scenario. Restoring to a cluster can
either be to the original cluster or to a new cluster. Medusa is able to restore data
to a cluster with a different size or topology than the original cluster, which has
traditionally been a challenge to figure out manually.

K8ssandra has incorporated Medusa in order to provide backup and restore capabili‐
ties for Cassandra clusters running in Kubernetes. To configure the use of Medusa in
a K8ssandraCluster, you’ll want to configure the medusa properties:

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
 name: demo
spec:
 cassandra:
 ...
 medusa:
 storageProperties:
 storageProvider: google_storage
 storageSecretRef:
 name: medusa-bucket-key
 bucketName: k8ssandra-medusa
 prefix: test
 ...

The options shown here include the storage provider, the bucket to use for backups,
an optional prefix to add to directory names used to organize backup files, and
the name of a Kubernetes Secret containing login credentials for the bucket. See

156 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/tmP91

the documentation for details on the contents of the Secret. Other available options
include enabling SSL on the bucket connection, and setting the policies for purging
old backups such as a maximum age or number of backups.

Creating a Backup
Once the K8ssandraCluster has been started, you can create backups using the Cas‐
sandraBackup CRD. For example, you could initiate a backup of the CassandraData‐
center dc1 using a command like this:

cat <<EOF | kubectl apply -f -n k8ssandra-operator -
apiVersion: medusa.k8ssandra.io/v1alpha1
kind: CassandraBackup
metadata:
 name: medusa-backup1
spec:
 cassandraDatacenter: dc1
 name: medusa-backup1
EOF

The steps in processing of this resource are shown in Figure 6-9.

Figure 6-9. Performing a Datacenter backup using Medusa

When you apply the resource definition (1), kubectl registers the resource with the
API Server (2). The API server notifies the Medusa Controller running as part of the
K8ssandra Operator (3).

Backing Up and Restoring Data with Cassandra Medusa | 157

https://oreil.ly/ujZYw

The Medusa Controller contacts a sidecar container (4), which K8ssandra has injec‐
ted into the Cassandra Pod because you chose to enable Medusa on the K8ssan‐
draCluster. The Medusa sidecar container uses nodetool commands to a backup on
the Cassandra node via JMX (5) (the JMX interface is exposed only within the Pod).

Cassandra performs a backup (6), marking the SSTable files on the PersistentVolume
that mark the current snapshot. The Medusa sidecar copies the snapshot files from
the PV to the bucket (7). Steps 4–7 are repeated for each Cassandra Pod in the
CassandraDatacenter.

You can monitor the progress of the backup by checking the status of the resource:

kubectl get cassandrabackup/medusa-backup1 -n k8ssandra-operator -o yaml
kind: CassandraBackup
metadata:
 name: medusa-backup1
spec:
 backupType: differential
 cassandraDatacenter: dc1
 name: medusa-backup1
status:
 ...
 ...
 finishTime: "2022-02-26T09:21:38Z"
 finished:
 - demo-dc1-default-sts-0
 - demo-dc1-default-sts-1
 - demo-dc1-default-sts-2
 startTime: "2022-02-26T09:21:35Z"

You’ll know the backup is complete when the finishTime attribute is populated. The
Pods that have been backed up are listed under the finished attribute.

Restoring from Backup
The process of restoring data from a backup is similar. To restore an entire Datacen‐
ter from backed-up data, you could create a CassandraRestore resource like this:

cat <<EOF | kubectl apply -f -n k8ssandra-operator -
apiVersion: medusa.k8ssandra.io/v1alpha1
kind: CassandraRestore
metadata:
 name: restore-backup1
spec:
 cassandraDatacenter:
 name: dc1
 clusterName: demo
 backup: medusa-backup1
 inPlace: true
 shutdown: true
EOF

158 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

When the Medusa Controller is notified of the new resource, it locates the Cas‐
sandraDatacenter and updates the Pod spec template within the StatefulSet that is
managing the Cassandra Pods. The updates consist of adding a new init container
called medusa-restore and setting environment variables that medusa-restore will
use to locate the datafiles that are to be restored. The update to the Pod spec template
causes the StatefulSet controller to perform a rolling update of the Cassandra Pods
in the StatefulSet. As each Pod restarts, medusa-restore copies the files from object
storage onto the PersistentVolume for the node, and then the Cassandra container
starts as usual. You can monitor the progress of the restore by checking the status of
the CassandraRestore resource.

A Common Language for Data Recovery?

It is interesting to note the similarities and differences between
the ways backup and restore operations are supported by the
K8ssandra Operator we’ve discussed in this chapter and the Vitess
Operator discussed in Chapter 5.
In K8ssandra, the CassandraBackup and CassandraRestore
resources function in a manner similar to Kubernetes Jobs—they
represent a task that you would like to have performed as well as
the results of the task. In contrast, the VitessBackup resource repre‐
sents a record of a backup that the Vitess Operator has performed
based on the configuration of a VitessCluster resource. There is no
equivalent resource to the CassandraRestore operator in Vitess.
Although K8ssandra and Vitess differ significantly in their
approach to managing backups, both represent each backup task
as a resource. Perhaps this common ground could be the starting
point toward the development of common resource definitions for
backup and restore operations, helping fulfill the vision introduced
in Chapter 5.

Similar to the behavior of Cassandra Reaper, a single instance of Medusa can be
configured to manage backup and restore operations across multiple Datacenters or
Cassandra clusters. See the K8ssandra documentation for more details on performing
backup and restore operations with Medusa.

Deploying Multicluster Applications in Kubernetes
One of the main selling points of a distributed database like Cassandra is its ability to
support deployments across multiple Datacenters. Many users take advantage of this
in order to promote high availability across geographically distributed Datacenters, to
provide lower-latency reads and writes for applications and their users.

Deploying Multicluster Applications in Kubernetes | 159

https://oreil.ly/Y2EkE

However, Kubernetes itself was not originally designed to support applications that
span multiple Kubernetes clusters. This has traditionally meant that creating such
multiregion applications leaves a lot of work to development teams.

This work takes two main forms: creating the network infrastructure to connect
the Kubernetes clusters, and coordinating interactions between resources in those
clusters. Let’s examine these requirements and the implications for an application like
Cassandra:

Multicluster networking requirements
From a networking perspective, the key is to have secure, reliable networking
between Datacenters. If you’re using a single cloud provider for your application,
this may be relatively simple to achieve using VPC capabilities offered by the
major cloud vendors.

If you’re using multiple clouds, you’ll need a third-party solution. For the most
part, Cassandra requires routable IPs between its nodes and does not rely on
name resolution, but it is helpful to have DNS in place as well to simplify the
process of managing Cassandra’s seed nodes.

Jeff ’s blog post “Deploy a Multi-Data Center Cassandra Cluster in Kubernetes”
describes an example configuration in Google Cloud Platform (GCP) using the
CloudDNS service, while Raghavan Srinivas’s blog post “Multi-Region Cassandra
on EKS with K8ssandra and Kubefed” describes a similar configuration on Ama‐
zon EKS.

Multicluster resource coordination requirements
Managing an application that spans multiple Kubernetes clusters means that
there are distinct resources in each cluster which have no relationship to
resources in other clusters that the Kubernetes control plane is aware of. To
manage the lifecycle of an application including deployment, upgrade, scaling
up and down, and teardown, you need to coordinate resources across multiple
Datacenters.

The Kubernetes Cluster Federation project (KubeFed for short) provides one
approach to providing a set of APIs for managing resources across clusters that
can be leveraged to build multicluster applications. This includes mechanisms
that represent Kubernetes clusters themselves as resources. While KubeFed is still
in beta, the K8ssandra Operator uses a similar design approach for managing
resources across clusters. We’ll examine this in more detail in “Kubernetes Clus‐
ter Federation” on page 163.

To achieve a multicluster Kubernetes deployment of Cassandra, you’ll need to estab‐
lish networking between Datacenters according to your specific situation. Given that
foundation, the K8ssandra Operator provides the facilities to manage the lifecycle
of resources across the Kubernetes clusters. For a simple example of deploying a

160 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/HpCYX
https://oreil.ly/9byYo
https://oreil.ly/9byYo
https://oreil.ly/yvUCm

multiregion K8ssandraCluster, use the instructions found in the K8ssandra docu‐
mentation, again using the Makefile:

make multi-up

This builds two kind clusters, deploys the K8ssandra Operator in each of them, and
creates a multicluster K8ssandraCluster. One advantage of using kind for a simple
demonstration is that Docker provides the networking between clusters. We’ll walk
through some of the key steps in this process in order to describe how the K8ssandra
Operator accomplishes this work.

The K8ssandra Operator supports two modes of installation: control plane (the
default) and data plane. For a multicluster deployment, one Kubernetes cluster must
be designated as the control plane cluster, and the others as data plane clusters.
The control plane cluster can optionally include a CassandraDatacenter, as in the
configuration shown in Figure 6-10.

Figure 6-10. K8ssandra multicluster architecture

When installed in control plane mode, the K8ssandra Operator uses two additional
CRDs to manage multicluster deployments: ReplicatedSecret and ClientConfig. You
can see evidence of the ClientConfig in the K8ssandraCluster configuration that was
used, which looks something like the following:

Deploying Multicluster Applications in Kubernetes | 161

https://oreil.ly/bmcil

apiVersion: k8ssandra.io/v1alpha1
kind: K8ssandraCluster
metadata:
 name: demo
spec:
 cassandra:
 serverVersion: "4.0.1"
 ...
 networking:
 hostNetwork: true
 datacenters:
 - metadata:
 name: dc1
 size: 3
 stargate:
 size: 1
 - metadata:
 name: dc2
 k8sContext: kind-k8ssandra-1
 size: 3
 stargate:
 size: 1

This configuration specifies a K8ssandraCluster demo consisting of two CassandraDa‐
tacenters, dc1 and dc2. Each Datacenter has its own configuration so that you can
select a different number of Cassandra and Stargate nodes, or different resource
allocations for the Pods. In the demo configuration, dc1 is running in the control
plane cluster kind-k8ssandra-0, and dc2 is running in the data plane cluster kind-
k8ssandra-1.

Notice the k8sContext: kind-k8ssandra-1 line in the configuration. This is a refer‐
ence to a ClientConfig resource that was created by the make command. A ClientCon‐
fig is a resource that represents the information needed to connect to the API server
of another cluster, similar to the way kubectl stores information about different
clusters on your local machine. The ClientConfig resource references a Secret that
is used to store access credentials securely. The K8ssandra Operator repo includes a
convenience script that can be used to create ClientConfig resources for Kubernetes
clusters.

When you create a K8ssandraCluster in the control plane cluster, it uses the Client‐
Configs to connect to each remote Kubernetes cluster in order to create the specified
resources. For the preceding configuration, this includes CassandraDatacenter and
Stargate resources, but can also include other resources such as Medusa and Prome‐
theus ServiceMonitor.

The ReplicatedSecret is another resource involved in sharing access credentials. The
control plane K8ssandra Operator uses this resource to keep track of Secrets that
it creates in each remote cluster. These Secrets are used by the various K8ssandra

162 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/wPINU

components to securely communicate information such as the default Cassandra
administrator credentials with each other. The K8ssandra Operator creates and man‐
ages ReplicatedSecret resources itself; you don’t need to interact with them.

The K8ssandraCluster, ClientConfig, and ReplicatedSecret resources exist only in the
control plane cluster, and when the K8ssandra Operator is deployed in data plane
mode, it does not even run the controllers associated with those resource types.

More Detail on the K8ssandra Operator

This is a quick summary of a complex design for a multicluster
operator. For more details on the approach, see the K8ssandra
Operator architecture overview and John Sanda’s presentation at
the Data on Kubernetes Community (DoKC) meetup.

Now let’s consider a more general approach to building multicluster applications that
we can compare and contrast with K8ssandra’s approach.

Kubernetes Cluster Federation
With Irfan Ur Rehman, Senior Engineer, Turbonomic (an IBM company)

KubeFed is a project for building multicluster applications, managed by the Kuber‐
netes Multicluster SIG. The project was initially called Federation, but was renamed
Kubernetes Cluster Federation (KubeFed), to distinguish it from the term federation
being used in projects outside of Kubernetes.

KubeFed defines federation as joining a set of clusters into a pool, which then pro‐
vides a unified API to the user to distribute applications into those clusters. To
use KubeFed, you create federated resources in a base cluster. A federated resource
contains templates for Kubernetes built-in or custom resources. KubeFed acts as a
resource reconciler, using the templates you provide to push resources to the member
clusters.

You might want the templates to be applied in slightly different ways in each member
cluster, so KubeFed supports concepts called placements and overrides. A placement
defines where applications and their resources are deployed. For example, you could
use a placement to push resources in cluster 1 but not cluster 2 or to indicate you
want more replicas in one cluster than another cluster. Overrides allow you to provide
different values for resource attributes for a specific cluster.

KubeFed also provides resources to support higher-order things you might want to
do. The ReplicaScheduler is a resource that manages Deployments and ReplicaSets.
This allows you to deploy your application by specifying the total number of replicas
desired across clusters, without worrying about which clusters they go to. You can do
something similar for StatefulSets.

Deploying Multicluster Applications in Kubernetes | 163

https://oreil.ly/ACAD2
https://oreil.ly/RMK3E
https://oreil.ly/lfWvB
https://oreil.ly/lfWvB

Cluster federation, placements, and overrides are three key concepts defined by
KubeFed, along with others defined on the concepts page. These terms have gained
wide popularity and are used across other projects as well. For example, Argo CD is
a GitOps toolset for Kubernetes which employs similar concepts such as placement
rules and overrides.

Other multicluster projects in the Kubernetes ecosystem have similar goals but differ
in implementation and scope:

Kubernetes Armada (Karmada)
This project, sponsored by Huawei, is similar to KubeFed but takes a different
API approach. Karmada reuses existing Kubernetes resources but extends them
with additional attributes in order to provide the appearance of a single Kuber‐
netes cluster.

Crossplane
This CNCF incubating project aims to provide a single API surface for you to
distribute resources and consume services from multiple clouds. Crossplane uses
the same declarative approach as Kubernetes but goes beyond just Kubernetes
resources, allowing you to incorporate offerings from the major cloud providers
such as database as a service (DBaaS) or network as a service (NaaS).

Open Cluster Management (OCM)
This project, sponsored by Red Hat, provides an ecosystem of components for
working across multiple Kubernetes clusters.

Each of these projects takes a similar approach at a high level but has its own
opinionated APIs and nuances which might be more suitable to different users.

KubeFed and these similar projects are primarily concerned with resource replication.
To have multicluster applications, you also need networking solutions, which can get
a little more complex. One approach is to create cross-cluster network overlays using
open source projects like Submariner or Cilium.

Even with the network in place, you still have the problem of discovering applications
and resources across clusters and connecting them securely. The Multi-Cluster Serv‐
ices API is a proposal in the Kubernetes Multicluster SIG for providing this discovery.
It is based on endpoint slices, which allow a cluster to discover services from another
cluster. An alpha implementation is available.

Although KubeFed is still in Beta status, it is in a mature state, and some organ‐
izations are already using it in production. The core functionality of reconciling
resources across clusters is something that just works. The main item in the KubeFed
roadmap is a GA release, which should lead to further adoption.

Adoption can be a chicken-and-egg problem, because organizations often prefer to
back established projects. Throughout its history, KubeFed has had support from
RedHat/IBM, Huawei, D2iQ, and others, and backing by larger organizations is
important for driving adoption by the larger community.

164 | Chapter 6: Integrating Data Infrastructure in a Kubernetes Stack

https://oreil.ly/xByUc
https://oreil.ly/yLA6g
https://crossplane.io
https://oreil.ly/v6nV5
https://oreil.ly/ZalRQ
https://oreil.ly/hy7ck
https://oreil.ly/lMVf4
https://oreil.ly/lMVf4
https://oreil.ly/kDReX

Coming up with a single standard is challenging. Major cloud providers have a lack of
incentive to contribute to these efforts as opposed to supporting tooling centered on
their own platforms, so it is up to us in the open source community to invest in this
area.

As you can see, there is a lot of potential for growth in the area of Kubernetes
federation and the ability to manage resources across Kubernetes cluster boundaries.
For example, as a database whose primary superpower is running across multiple
Datacenters, Cassandra seems like a great match for a multicluster solution like
KubeFed.

The K8ssandra Operator and KubeFed have taken similar architectural approaches,
where custom “federated” resources provide templates used to define resources in
other clusters. This commonality points to the possibility for future collaboration
across these projects and others based on similar design principles. Perhaps in the
future, CRDs like K8ssandra’s ClientConfig and ReplicatedSecret can be replaced by
equivalent functionality provided by KubeFed.

Summary
In this chapter, you’ve learned how data infrastructure can be composed with other
infrastructure to build reusable stacks on Kubernetes. Using the K8ssandra project
as an example, you’ve learned about aspects including integrating data infrastructure
with API gateways and monitoring solutions to provide more full-featured solutions.

You’ve also learned some of the opportunities and challenges with adapting existing
technologies onto Kubernetes and creating multicluster data infrastructure deploy‐
ments. In the next chapter, we’ll explore how to design new cloud native data
infrastructure that takes advantage of everything that Kubernetes provides without
requiring adaptation and discover what new possibilities that opens up.

Summary | 165

https://oreil.ly/1Hc43
https://oreil.ly/1Hc43

CHAPTER 7

The Kubernetes Native Database

The software industry is flush with terms that define major trends in a single word or
short phrase. You can see one of them in the title of this book: cloud native. Another
example is microservice, a major architectural paradigm that touches much of the
technology we’re discussing here. More recently, terms like Kubernetes native and
serverless have emerged.

While succinct and catchy, distilling a complex topic or trend down to a single sound
bite leaves room for ambiguity, or at least for reasonable questions such as “What
does this actually mean?” To further muddy the waters, terms such as these are
frequently used in the context of marketing products as a way to gain leverage or
differentiate against other competitive offerings. Whether the content you’re consum‐
ing makes an overt statement or it’s just the subtext, you may have wondered whether
a given technology must be better to run on Kubernetes than other offerings because
it’s labeled Kubernetes native.

Of course, for these terms to be useful to us in evaluating and picking the right
technologies for our applications, the real task is to unpack what they really mean,
as we did with the term cloud native data in Chapter 1. In this chapter, we’ll look at
what it means for data technology to be Kubernetes native and see if we can arrive at
a definition that we can agree on. To do this, we’ll examine a couple of projects that
claim these terms and derive the common principles: TiDB and Astra DB. Are you
ready? Let’s dive in!

Why a Kubernetes Native Approach Is Needed
First, let’s discuss why the idea of a Kubernetes native database came up in the first
place. Up to this point in the book, we’ve focused on deployment of existing data‐
bases on Kubernetes including MySQL and Cassandra. These are mature databases

167

that were around before Kubernetes existed and have proven themselves over time.
They have large install bases and user communities, and because of this investment,
you can see why there’s a large incentive to run these databases in Kubernetes
environments, and why there has been such interest in creating operators to automate
them.

At the same time, you’ve probably noticed some of the awkwardness in adapting
these databases to run on Kubernetes. While it is pretty straightforward to point a
database to Kubernetes-based storage just by changing a mount path, tighter integra‐
tion with Kubernetes to manage databases that consist of multiple nodes can be a bit
more involved. This can range from relatively simple tasks like deploying a legacy
management UI in a Pod and exposing access to the HTTP port, to the more complex
deployment of sidecars that we saw in Chapter 6 to provide APIs for management
and metrics collection.

The recognition of this complexity has led some innovators to develop new databases
that are designed to be Kubernetes native from day one. It’s a well-known axiom
in the database industry that it takes 5–10 years for a new database engine to reach
a point of maturity. Because of this, these Kubernetes native databases tend not to
be completely new implementations, but rather refactoring of existing databases into
microservices that can be scaled independently, while maintaining compatibility with
existing APIs that developers are accustomed to. Thus, the trend of decomposing the
monolith has arrived at the data tier. The emerging generation of databases will be
based on new architectures to truly leverage the benefits of Kubernetes.

To help us assess what might qualify these new databases as Kubernetes native, let’s
use the cloud native data principles introduced in “Principles of Cloud Native Data
Infrastructure” on page 14 as a guide to formulate some questions to ask how a
database interacts with Kubernetes:

Principle 1: Leverage compute, network, and storage as commodity APIs
How does the database use Kubernetes compute resources (Pods, Deployments,
StatefulSets), network resources (Services and Ingress), and storage resources
(PersistentVolumes, PersistentVolumeClaims, StorageClasses)?

Principle 2: Separate the control and data planes
Is the database deployed and managed by an operator? What custom resources
does it define? Are other workloads in the control plane besides the operator?

Principle 3: Make observability easy
How do the various services in the architecture expose metrics and logs to
support collection by the Kubernetes control plane and third-party extensions?

168 | Chapter 7: The Kubernetes Native Database

Principle 4: Make the default configuration secure
Do the database and associated operator use Kubernetes Secrets to share creden‐
tials, and use Roles and RoleBindings to manage access by Role? Do services
minimize the number of exposed points and require secure access to them?

Principle 5: Prefer declarative configuration
Extending Principle 2, can the database be managed entirely by creating, updat‐
ing, or deleting Helm charts and Kubernetes resources (whether built-in or
custom resources), or are other tools required?

In the sections that follow, we’ll explore the answers to these questions for two
databases and see what else we can learn about what it means to be Kubernetes native.
That will help us to build a checklist at the end of this chapter that will help solidify
our definition. (See “What to Look for in a Kubernetes Native Database” on page 189
for what we come up with.)

Hybrid Data Access at Scale with TiDB
The databases that have received most of our focus in this book so far represent
two major trends in database architecture that trace their lineage back for decades
or more. MySQL is a relational database that provides its own flavor of the Standard
Query Language (SQL), based on rules developed by Edgar Codd in the 1970s.

In the early 2000s, companies building web-scale applications began to push the
limits of what could be accomplished with the relational databases of the day. As
database sizes began growing beyond what could feasibly be managed on a single
instance, techniques like sharding were used to scale across multiple instances. These
were frequently expensive, difficult to operate, and not always reliable.

In response to this need, Cassandra and other so-called NoSQL databases emerged
in a period of intense innovation and experimentation. These databases provide
linear scalability through adding additional nodes. They offer different data models,
or ways of representing data: for example, key-value stores such as Redis, document
databases such as MongoDB, graph databases such as Neo4j, and others. NoSQL
databases tended to provide weaker consistency guarantees and omit support for
more complex behaviors like transactions and joins to achieve high performance and
availability at scale, a trade-off documented by Eric Brewer in his CAP theorem.

Hybrid Data Access at Scale with TiDB | 169

https://oreil.ly/aJq6M

Because of the continued developer demand for traditional relational semantics such
as strong consistency, transactions, and joins, multiple teams began to revive the
idea of supporting these capabilities in distributed databases starting around 2012.
These so-called NewSQL databases were based on more efficient and performant
consensus algorithms. Two key papers helped drive the emergence of the NewSQL
movement. First, the Calvin paper introduced a global consensus protocol which
represented a more reliable and performant approach for guaranteeing strong con‐
sistency, later adopted by FaunaDB and other databases. Second, Google’s Spanner
paper introduced a design for a distributed relational database using sharding and a
new consensus algorithm that leveraged the improved ability of cloud infrastructure
to provide time synchronization across datacenters. Besides Google Spanner, this
approach was implemented by databases including CockroachDB and YugabyteDB.

More on Consistency and Consensus

While we don’t have space in this book to dive deeply into
the trade-offs between various consensus algorithms and how
they are used to provide various data consistency guarantees, an
understanding of these concepts is helpful in choosing the right
data infrastructure for your cloud applications. If you’re interes‐
ted in learning more in this area, Martin Kleppmann’s Designing
Data-Intensive Applications (O’Reilly) is a great source, especially
Chapter 9, “Consistency and Consensus”.

TiDB (where Ti stands for Titanium) represents a continuation of the NewSQL trend
in the cloud native space. TiDB is an open source, MySQL-compatible database that
supports both transactional and analytic workloads. It was initially developed and
is primarily supported by PingCAP. While TiDB is a database designed to embody
cloud native principles of scalability and elasticity, what makes it especially interesting
for our discussion is that it has been explicitly designed to run on Kubernetes and to
rely on capabilities provided by the Kubernetes control plane. In this way, one could
argue that TiDB is not merely a Kubernetes native database, but also a Kubernetes
only database. Let’s dig into the details.

TiDB Architecture
A key characteristic of TiDB which distinguishes it from other databases we’ve
examined so far in this book is its ability to support transactional and analytic work‐
loads. This approach, known as hybrid transactional/analytical processing (HTAP),
supports both types of queries without a separate extract, transform, and load (ETL)
process. As shown in Figure 7-1, TiDB does this by providing two database engines
under the hood: TiKV and TiFlash. This approach was inspired by Google’s F1
project, a layer built on top of Spanner.

170 | Chapter 7: The Kubernetes Native Database

https://oreil.ly/HLw2M
https://oreil.ly/zDl5z
https://oreil.ly/zDl5z
https://oreil.ly/6ndic
https://oreil.ly/6ndic
https://oreil.ly/jZNAI
https://oreil.ly/lakAf
https://oreil.ly/lakAf

Figure 7-1. TiDB architecture

One key aspect that gives TiDB a cloud native architecture is the packaging of com‐
pute and storage operations into separate components, each of which is composed of
independently scalable services organized in clusters. Let’s examine the roles of each
of these components:

TiDB
Each TiDB instance is a stateless service that exposes a MySQL endpoint to client
applications. TiDB parses incoming SQL requests and uses metadata from the
Placement Driver (PD) to create an execution plan containing queries to make
on specific TiKV and TiFlash nodes in the storage cluster. TiDB executes these
queries, assembles the results, and returns to the client application. The TiDB
cluster is typically deployed with a proxy in front of it to provide load balancing.

TiKV
The storage cluster consists of a mixture of TiKV and TiFlash nodes. First, let’s
examine TiKV, an open source, distributed key-value database that uses RocksDB
as its backing storage engine. TiKV exposes a custom distributed SQL API that
the TiDB nodes use to execute queries to store and retrieve data and manage
distributed transactions. TiKV stores multiple replicas of your data, typically at
least three, to support high availability and automatic failover. TiKV is a CNCF
graduated project which can be used independently from TiDB, as we’ll discuss
later.

Hybrid Data Access at Scale with TiDB | 171

https://tikv.org
http://rocksdb.org
https://oreil.ly/ypLlC
https://oreil.ly/ypLlC

TiFlash
The storage cluster also includes TiFlash nodes, to which data is replicated from
TiKV nodes as it is written. TiFlash is a columnar database based on the open
source ClickHouse analytic database, which means that it organizes data storage
in columns rather than rows. Columnar databases can provide a significant
performance advantage for analytic queries requiring the extraction of the same
column across multiple rows.

TiSpark
This library is built for Apache Spark to support complex OLAP queries. TiSpark
integrates with the Spark Driver and Spark Executors, providing the capability to
ingest data from TiFlash instances using the distributed SQL API. We’ll examine
the Spark architecture and the details of deploying Spark on Kubernetes in
Chapter 9.

Placement Driver (PD)
The PD manages the metadata for a TiDB installation. PD instances are deployed
in a cluster of at least three nodes. TiDB uses a range-based sharding mechanism
where the keys in each table are divided into ranges called regions. The PD is
responsible for determining the ranges of data assigned to each region, and the
TiKV nodes that will store the data for each region. It monitors the amount of
data in each region and splits regions that become too large, to facilitate scaling
up, and merging smaller regions to scale down.

Because the TiDB architecture consists of well-defined interfaces between the compo‐
nents, it is an extensible architecture in which different pieces can be plugged in.
For example, TiKV provides a distributed key-value storage solution that can be
reused in other applications. The TiPrometheus project is an example, providing
a Prometheus-compliant compute layer on top of TiKV. For another example, you
could provide an alternate implementation of TiKV that implements the distributed
SQL API on top of a different storage engine.

Pluggable Storage Engines

In this chapter so far, we’ve made several mentions of “storage
engines” or “database engines.” This term refers to the part of the
database that manages the storage and retrieval of data on persis‐
tent media. In distributed databases, a distinction is often made
between the storage engine and the proxy layer which sits on top
of it to manage data replication between nodes. Chapter 3, “Storage
and Retrieval,” from Designing Data-Intensive Applications includes
discussion of storage engine types such as the B-trees used in most
relational databases and the log-structured merge tree (LSM tree)
used in Apache Cassandra and other NoSQL databases.

172 | Chapter 7: The Kubernetes Native Database

https://oreil.ly/PCVlg
https://oreil.ly/PkmqK
https://oreil.ly/6ndic

One interesting aspect of TiDB is the way in which it reuses existing technology.
We’ve seen examples of this in the usage of components including RocksDB and
Spark. TiDB also uses algorithms developed by other organizations. Here are a couple
of examples:

Raft consensus protocol
At the TiDB layer, the Raft consensus protocol is used to manage consistency
between replicas. Raft is similar to the Paxos algorithm used by Cassandra in
terms of its behavior, but it’s designed to be much simpler to learn and use. TiDB
uses a separate Raft group for each region, where a group typically consists of
a leader and two or more replicas. If a leader node is lost, an election is run
to select a new leader, and a new replica can be added to ensure the desired
number of replicas. In addition, the TiFlash nodes are configured as a special
type of replica called learner replicas. Data is replicated to learner replicas from
the TiDB nodes, but they cannot be selected as a leader. You can read more about
how TiDB uses Raft for high availability and other related topics on the PingCAP
blog.

Percolator transaction management
At the TiDB layer, distributed transactions are supported using an implemen‐
tation of the Percolator algorithm with optimizations specific to the TiDB
project. Percolator was originally developed at Google for supporting incremen‐
tal updates to search indexes.

One of the arguments we’re making in this chapter is that part of what it means
for data infrastructure to be cloud native is to compose existing APIs, services, and
algorithms wherever possible, and TiDB is a great example of this.

Deploying TiDB in Kubernetes
While TiDB can be deployed in a variety of ways including bare metal and VMs, the
TiDB team has invested a large effort in tooling and documentation to make TiDB
a truly Kubernetes native database. The TiDB Operator manages TiDB clusters in
Kubernetes, including deployment, upgrade, scaling, backup and restore, and more.

The operator documentation provides quick start guides for desktop Kubernetes
distributions such as kind, minikube, and Google Kubernetes Engine (GKE). These
instructions guide you through steps including installing CRDs and the TiDB opera‐
tor using Helm, and a simple TiDB cluster including monitoring services. We’ll use
the quick start instructions as a vehicle to talk about what makes TiDB a Kubernetes
native database.

Hybrid Data Access at Scale with TiDB | 173

https://oreil.ly/Oi6Dk
https://oreil.ly/BddzV
https://oreil.ly/Y2YuS
https://oreil.ly/Y2YuS
https://oreil.ly/heMho
https://oreil.ly/xZtGq
https://oreil.ly/iIZc0
https://oreil.ly/5heDA

Installing the TiDB CRDs
After making sure you have a Kubernetes cluster that meets the defined prerequisites
such as having a default StorageClass, the first step in deploying TiDB using the oper‐
ator is installing the CRDs used by the operator. This is done using an instruction
such as the following (note the actual operator version number v1.3.2 may vary):

set GH_LINK=https://raw.githubusercontent.com
kubectl create -f \
 $GH_LINK/pingcap/tidb-operator/v1.3.2/manifests/crd.yaml

This results in the creation of several CRDs, which you can observe by running the
command kubectl get crd as we have done in previous chapters. We’ll quickly
discuss the purpose of each resource since several of them hint at additional features
of interest:

• The TidbCluster is the primary resource that describes the desired configuration•
of a TiDB cluster. We’ll look at an example later.

• The TidbMonitor resource is used to deploy a Prometheus-based monitoring•
stack to observe one or more TidbClusters. As we have seen with other projects,
Prometheus (or at least its API) has become a de facto standard for metrics
collection for databases and other infrastructure deployed on Kubernetes.

• The Backup and Restore resources represent the actions of performing a backup•
or restoring from a backup. This is similar to other operators we’ve examined
previously from the Vitess (see “PlanetScale Vitess Operator” on page 117) and
K8ssandra (Chapter 6) projects. The TiDB Operator also provides a Backup‐
Schedule resource that can be used to configure regular backups.

• The TidbInitializer is an optional resource that you can create to perform initial‐•
ization tasks on a TidbCluster, including setting administrator credentials and
executing SQL statements for schema creation or initial data loading.

• The TidbClusterAutoScaler is another optional resource which can be used to•
configure auto-scaling behavior of a TidbCluster. The number of TiKV or TiDB
nodes in a TidbCluster can be configured to scale up or down between minimum
and maximum limits based on CPU utilization. The addition of scaling rules
based on other metrics is on the project roadmap. As we discussed in “Choosing
Operators” on page 127, auto-scaling is considered a feature of an operator at
Level 5 or Autopilot, the highest maturity level.

• The TidbNGMonitoring is an optional resource that configures a TidbCluster to•
enable continuous profiling down to the system call level. The resulting profiling
data and flame graph visualizations can be observed using the TiDB Dashboard,
which is deployed separately. This is typically used by project engineers looking
to optimize the database, but application and platform developers may find this
useful as well.

174 | Chapter 7: The Kubernetes Native Database

https://oreil.ly/7myfI
https://oreil.ly/qFsmu
https://oreil.ly/qFsmu
https://oreil.ly/wVbf2
https://oreil.ly/2n8k5
https://oreil.ly/23pLs

• The DMCluster resource is used to deploy an instance of the TiDB Data Migra‐•
tion (DM) platform that supports migration of MySQL and MariaDB database
instances into a TidbCluster. It can also be configured to migrate from an existing
TiDB installation outside of Kubernetes to a TidbCluster. The ability to deploy
data migration services alongside a destination TidbCluster in Kubernetes man‐
aged by the same operator is a great example of what it means to develop data
ecosystems in Kubernetes, a pattern that we hope to see more of in the future.

For the remainder of this section, we’ll focus on the TidbCluster and TidbMonitoring
resources.

Installing the TiDB Operator
After installing the CRDs, the next step is to install the TiDB Operator using Helm.
You’ll need to add the Helm repository first before installing the TiDB Operator in its
own Namespace:

helm repo add pingcap https://charts.pingcap.org
helm install –create-namespace --namespace tidb-admin tidb-operator \
 pingcap/tidb-operator --version v1.3.2

You can watch the resulting Pods come online using kubectl get pods and referenc‐
ing the tidb-admin Namespace. Figure 7-2 provides a summary of the elements that
you’ve installed up to this point. This includes Deployments to manage the TiDB
Operator (labeled as tidb-controller-manager) and the TiDB Scheduler.

The TiDB Scheduler is an optional extension to the Kubernetes built-in scheduler.
While it is deployed by default as part of the TiDB Operator, it can be disabled.
Assuming the TiDB Scheduler is not disabled, using it for a specific TidbCluster still
requires opting in by setting the schedulerName property to tidb-scheduler. If this
property is set, the TiDB Operator will assign the TiDB Scheduler as the scheduler
that Kubernetes will use when creating TiKV, and PD Pods.

The TiDB Scheduler extends the Kubernetes built-in scheduler to add custom sched‐
uling rules for Pods that are part of a TidbCluster, helping to achieve high availa‐
bility of the database while spreading the load evenly across the available Worker
Nodes in the Kubernetes cluster. While for many types of infrastructure, the existing
mechanisms Kubernetes offers for influencing the default scheduler such as affinity
rules, taints, and tolerations are sufficient, TiDB provides a useful example of when
and how to implement custom scheduling logic. We’ll look at Kubernetes scheduler
extensions in more detail in Chapter 9.

Hybrid Data Access at Scale with TiDB | 175

https://oreil.ly/C5NG0
https://oreil.ly/C5NG0

Figure 7-2. Installing the TiDB Operator and CRDs

TiDB Operator Helm Chart Options

This installation omits usage of a values.yaml file, but you can see
the available options by running following command:

helm show values pingcap/tidb-operator

This includes the option to disable the TiDB Scheduler.

Creating a TidbCluster
Once the TiDB Operator has been installed, you’re ready to create a TidbCluster
resource. While many example configurations are available in the TiDB Operator
GitHub repository, let’s use the one referenced in the quick start guide:

set GH_LINK=https://raw.githubusercontent.com
kubectl create namespace tidb-cluster
kubectl -n tidb-cluster apply -f \
 $GH_LINK/pingcap/tidb-operator/master/examples/basic/tidb-cluster.yaml

176 | Chapter 7: The Kubernetes Native Database

https://oreil.ly/66uf7

While the TidbCluster is being created, you can reference the contents of this file,
which look something like this (with comments and some details removed):

apiVersion: pingcap.com/v1alpha1
kind: TidbCluster
metadata:
 name: basic
spec:
 version: v5.4.0
 ...
 pd:
 baseImage: pingcap/pd
 maxFailoverCount: 0
 replicas: 1
 requests:
 storage: "1Gi"
 config: {}
 tikv:
 baseImage: pingcap/tikv
 maxFailoverCount: 0
 evictLeaderTimeout: 1m
 replicas: 1
 requests:
 storage: "1Gi"
 config:
 ...
 tidb:
 baseImage: pingcap/tidb
 maxFailoverCount: 0
 replicas: 1
 service:
 type: ClusterIP
 config: {}

Notice that this results in the creation of a TidbCluster named basic in the tidb-
cluster Namespace, with one replica each of TiDB, TiKV, and PD, using the stan‐
dard PingCAP images for each. Additional options are used to specify the minimum
amount of compute and storage resources required to achieve a functioning cluster.
No TiFlash nodes are included in this simple configuration.

TidbCluster API

The full list of options for a TidbCluster can be found as part of the
API available in the GitHub repository. This same page includes
options for the other CRDs used by the TiDB Operator. As you
explore the options for these CRDs, you’ll see evidence of the
common practice of allowing many of the options that will be used
to specify underlying resources to be overridden (for example, the
Pod specification that will be set on a Deployment).

Hybrid Data Access at Scale with TiDB | 177

https://oreil.ly/XoC02

We encourage you to take the opportunity to use kubectl or your favorite visualiza‐
tion tool to explore the resources created as part of the TidbCluster, a summary of
which is provided in Figure 7-3.

Figure 7-3. A basic TidbCluster

As you can see, the TiDB Operator creates StatefulSets to manage the TiDB, TiKV,
and Placement Driver instances, allocating a PVC for each instance. As an I/O-
intensive application, the default configuration is to use local PersistentVolumes as
the backing store.

In addition, a Deployment is created to run a Discovery Service which the various
components use to learn of each other’s location. The Discovery Service performs a
similar role to that of etcd in other data technologies we’ve examined in the book.
The TiDB Operator also configures services for each StatefulSet and Deployment that

178 | Chapter 7: The Kubernetes Native Database

facilitate communication within the TiDB cluster as well as exposing capabilities to
external clients.

The TiDB Operator supports the deployment of a Prometheus monitoring stack
that can manage one or more TiDB clusters. You can add monitoring to the cluster
created previously using the following command:

set GH_LINK=https://raw.githubusercontent.com
kubectl -n tidb-cluster apply -f \
 $GH_LINK/pingcap/tidb-operator/master/examples/basic/tidb-monitor.yaml

While this is deploying, let’s examine the contents of the tidb-monitor.yaml configura‐
tion file:

apiVersion: pingcap.com/v1alpha1
kind: TidbMonitor
metadata:
 name: basic
spec:
 replicas: 1
 clusters:
 - name: basic
 prometheus:
 baseImage: prom/prometheus
 version: v2.27.1
 grafana:
 baseImage: grafana/grafana
 version: 7.5.11
 initializer:
 baseImage: pingcap/tidb-monitor-initializer
 version: v5.4.0
 reloader:
 baseImage: pingcap/tidb-monitor-reloader
 version: v1.0.1
 prometheusReloader:
 baseImage: quay.io/prometheus-operator/prometheus-config-reloader
 version: v0.49.0
 imagePullPolicy: IfNotPresent

As you can see, the TidbMonitor resource can point to one or more TidbClusters.
This TidbMonitor is configured to manage the basic cluster you created previously.
The TidbMonitor resource also allows you to specify the versions of Prometheus,
Grafana, and additional tools that are used to initialize and update the monitoring
stack. If you examine the contents of the tidb-cluster Namespace, you’ll see addi‐
tional workloads that have been created to manage these elements.

TiDB uses the Prometheus stack in a similar way to the K8ssandra project, as we
discussed in “Unified Monitoring Infrastructure with Prometheus and Grafana”
on page 150. In both of these projects, the Prometheus stack is supported as an
optional extension to provide a monitoring capability you can use with very little

Hybrid Data Access at Scale with TiDB | 179

customization. The configurations and provided visualizations focus on the key met‐
rics that drive awareness of database health. Even if you are already managing your
own monitoring infrastructure or using a third-party software-as-a-service (SaaS)
solution, the configurations and charts can give you a head start on incorporating
database monitoring into the rest of your observability approach.

A Roadmap for Cloud Native Databases on Kubernetes
With Dongxu (Ed) Huang, Cofounder and CTO, PingCAP

TiDB was created out of the experience of maintaining a storage system for a large
internet company who ran an Android app store. The distributed MySQL sharding
cluster we were using was innovative at the time but also too hard to maintain. With
manual sharding, you cannot do cross-shard joins or transactions. It’s painful for the
application developer. The Google Spanner and F1 papers provided the inspiration
for future databases like TiDB with scalability and high availability, consistency,
full-featured SQL, and global transaction support. From the application developers’
perspective, it should feel like going back to the old days of single-node development,
but now with horizontal scalability.

The problem statement was straightforward. We wanted to provide scalable online
transaction processing (OLTP) queries with reduced migration cost and an easy-to-
use MySQL interface. At that time, there was no open source implementation of
Spanner, so we started to build TiKV and donated it to the CNCF. As more and
more users started running OLAP queries on top of their real-time data in TiDB,
we expanded our OLAP capability to create HTAP—a hybrid approach. The TiFlash
engine that supports OLAP queries has recently been made open source as well.

The TiDB architecture does have some cloud native aspects from its original design,
especially since it has a shared-nothing architecture. However, being called a cloud
native database requires a higher standard. A cloud native database should make
maximum use of the infrastructure your cloud vendor provides (for example, a
storage engine that leverages S3 or uses a cloud’s serverless features). By this standard,
the most cloud native database is Snowflake. The approach that customers need is
this: pay for only what you use. If you have to buy it by the node, it’s not serverless.

We like to refer to TiDB as a Kubernetes native database. When we saw the first etcd
operator released in 2016, we were inspired to create our own operator. At that time,
Kubernetes was not as mature as it is today. We didn’t have CRDs, just third-party
resources. We had to build our own scheduler to make sure we could handle failover
correctly. The hardest part was handling local storage. Kubernetes was not designed
from the database engineer’s point of view. At Google, the team didn’t focus on
providing access to local disk for databases, since most of the systems were built
on top of columnar stores. The team didn’t care about local state, but as a database
engineer, you have to be very careful with your use of local disk. Since there was no
local storage API in Kubernetes when we started, we wrote our own controller to

180 | Chapter 7: The Kubernetes Native Database

manage local disks. We put a lot of resources into this effort. It was very complicated
and might have been the wrong decision.

Today things are a lot better. Kubernetes networking, StatefulSets, and CRDs are
mature and frequently utilized by application developers and database engineers. At
PingCAP, we use Kubernetes to run our managed service on public clouds. We have a
lot of users, and yet it’s very stable. We can work with it.

In the future of cloud native architectures, storage and compute will be separated
more and more clearly over time. In the past, you would never have built a database
on top of remote storage. But now it might be time to give up doing persistence on
local disks. We’re working on a new storage engine for TiDB built on top of shared
storage.

One area where Kubernetes needs to improve is support for multitenancy. Today,
building a multitenant application in Kubernetes is hard. Namespaces are not enough
of an abstraction to support multitenancy. Similar to control groups (cgroups) for
Linux, Kubernetes needs a virtualized cluster or some other multitenancy mechanism
within the cluster. A Kubernetes SIG is looking into multitenancy, and the work on
virtual clusters, or vclusters, is promising.

A second area where Kubernetes could improve is better support for hypervisors.
When you have large clusters, you don’t want to have virtualization on top of hard‐
ware and then run Kubernetes on top of that. The Kubernetes community could be
more ambitious and put more resources toward embracing hypervisors such as Cloud
Hypervisor.

For its part, the database world needs to be more focused on Kubernetes. DevOps and
application engineers are the mainstream Kubernetes community, but the database
folks are outside of that. Most database operators are not written by experienced
DBAs. Once you get beyond deploying the database, tuning a database is a hard job;
you have a lot of maintenance to do. Once you put a database in Kubernetes Pods,
tuning it requires going inside the Pods. For the DBA or DevOps engineer, that’s
the trickiest part. As a user, you should always prefer an operator provided by the
database vendor. If you’re a database vendor, you need to help the user by making it
easier to tune in the Kubernetes environment, not just deployment or upgrades. The
real world is not like running a demo.

As you can see, TiDB is a database with a flexible, extensible architecture that
has been designed with cloud native principles in mind. It also has a strong bias
toward being able to deploy and manage a database effectively in Kubernetes and has
provided us with some valuable insights on what it means to be Kubernetes native.
Consult the TiDB documentation for more information on features such as deploying
to multiple Kubernetes clusters.

Hybrid Data Access at Scale with TiDB | 181

https://oreil.ly/RY0bJ
https://www.vcluster.com
https://oreil.ly/18jj8
https://oreil.ly/18jj8
https://oreil.ly/NPHxy
https://oreil.ly/NPHxy

Serverless Cassandra with DataStax Astra DB
Since the advent of cloud computing in the early 2000s, public cloud providers
and infrastructure vendors have made continual advances in commoditizing various
layers of our architectural stacks as service offerings. This trend began with offering
compute, network, and storage as infrastructure as a service (IaaS) and proceeded into
other trends including platform as a service (PaaS), software as a service (SaaS), and
functions as a service (FaaS), sometimes conflated with the term serverless.

Most pertinent to our investigation here is the emergence of managed data infrastruc‐
ture offerings known as database as a service (DBaaS). This category includes the
following:

• Traditional databases offered as a managed cloud service, such as Amazon Rela‐•
tional Database Service (RDS) and PlanetScale

• Cloud databases like Google BigTable, Amazon Dynamo, and Snowflake that are•
available only as cloud offerings

• Managed NoSQL or NewSQL databases that can also be run on premises under•
an open source or source available license—for example, MongoDB Atlas, Data‐
Stax Astra DB, TiDB, and Cockroach DB

Over the past several years, many of the vendors behind these DBaaS services
have begun migrating onto Kubernetes to automate operations, manage compute
resources more efficiently, and make their solutions portable across clouds. DataStax
was one of several vendors that began offering Cassandra as a service. These vendors
typically used an architecture based on running traditional Cassandra clusters in a
cloud environment, with various “glue code” to integrate aspects like networking,
monitoring, and management that didn’t quite fit target deployment environments
like Kubernetes and public cloud IaaS. These include techniques like using sidecars to
collect metrics and logs, or deploying Cassandra nodes using StatefulSets to manage
scaling up and down in an orderly fashion.

Even with these workarounds for running in Kubernetes, Cassandra’s monolithic
architecture doesn’t readily promote the separation of compute and storage, which
can lead to some awkwardness when scaling. You scale up a Cassandra cluster by
adding additional nodes, where each node has the following capabilities:

Coordination
Receiving read and write requests and forwarding them to other nodes as needed
to achieve the requested number of replicas (also known as consistency level)

Writing and reading
Writing data to in-memory cache (memtables) and persistent storage (SSTables),
and reading it back as needed

182 | Chapter 7: The Kubernetes Native Database

Compaction and repair
Since Cassandra is an LSM-tree database, it does not update datafiles once they
are written to persistent storage. Compaction and repair are tasks that run in the
background as separate threads. Compaction helps Cassandra stay performant by
consolidating SSTables written at different times, ignoring obsolete and deleted
values. Repair is the process of comparing stored values across nodes to ensure
consistency.

Each node in a Cassandra cluster implements all of these capabilities and consumes
equivalent compute and storage resources. This makes it difficult to scale compute
and storage independently and can lead to situations where a cluster is overprovi‐
sioned in compute or storage resources.

In 2021, DataStax published a paper entitled “DataStax Astra DB: Designing a Server‐
less Cloud-Native Database-as-a-Service” that describes a different approach. Astra
DB is a version of Cassandra that has been refactored into microservices to allow
more fine-grained scalability and to take advantage of the benefits of Kubernetes.
In fact, Astra DB is not only Kubernetes native; it is essentially a Kubernetes-only
database. Figure 7-4 shows the Astra DB architecture at a high level, broken into a
control plane, data plane, and supporting infrastructure.

Figure 7-4. Astra DB architecture

Serverless Cassandra with DataStax Astra DB | 183

https://oreil.ly/yHSxz
https://oreil.ly/yHSxz

Let’s do a quick overview of the layers in this architecture:

Astra DB control plane
The control plane is responsible for provisioning Kubernetes clusters in various
cloud provider regions. It also provisions Astra DB clusters within those Kuber‐
netes clusters and provides the APIs that allow clients to create and manage
databases, either through the Astra DB web application, or programmatically
through the DevOps API. Jim Dickinson’s blog post “How We Built the DataStax
Astra DB Control Plane” describes the architecture of the control plane and how
it was migrated to be Kubernetes native.

Astra DB data plane
The data plane is where the actual Astra DB databases run. The data plane
consists of multiple microservices which together provide the capabilities that
would have been a part of a single monolithic Cassandra node. Each database is
deployed in a Kubernetes cluster in a dedicated Namespace and may be shared
across multiple tenants, as described in more detail later on.

Astra DB infrastructure
Each Kubernetes cluster also contains a set of infrastructure components that are
shared across the Astra DB databases in that cluster, including etcd, Prometheus,
and Grafana. etcd is used to store metadata, including the assignment of tenants
to databases and database schema for each tenant. It also stores information
about the cluster topology, replacing the role of gossip in the traditional Cas‐
sandra architecture. Prometheus and Grafana are deployed in a similar way as
described in other architectures in this book.

Now let’s dig more into a few of the microservices in the data plane:

Astra DB Operator
The Astra DB Operator manages the Kubernetes resources required for each
database instance as described by a DBInstallation custom resource, as shown in
Figure 7-5. Similar to the Cass Operator project we discussed in “Managing Cas‐
sandra in Kubernetes with Cass Operator” on page 143, the Astra DB Operator
automates many of the operational tasks associated with managing a Cassandra
cluster that would typically be performed by human operators using nodetool.

Coordination Service
The Coordination Service is responsible for handling application queries includ‐
ing reads, writes, and schema management. Each Coordination Service is an
instance of Stargate (as discussed in “Enabling Developer Productivity with
Stargate APIs” on page 147 that exposes endpoints for CQL and other APIs,
with an Astra DB–specific plug-in that enables it to route requests intelligently to
Data Service instances to actually store and retrieve data. Factoring this compute-
intensive routing functionality into its own microservice enables it to be scaled

184 | Chapter 7: The Kubernetes Native Database

https://oreil.ly/jhU2Q
https://oreil.ly/jhU2Q

up or down based on query traffic, independent of the volume of data being
managed.

Data Service
Each Data Service instance is responsible for managing a subset of the data for
each assigned tenant based on its position in the Cassandra token ring. The
Data Service takes a tiered approach to data storage, maintaining in-memory
data structures such as memtables, using local disk for caching, commit logs and
indexes, and object storage for longer-term persistence of SSTables. The usage of
object storage is one of the key differentiators of Astra DB from other databases
we’ve examined so far, and we’ll examine other benefits of this approach through‐
out this section.

Compaction Service
The Compaction Service is responsible for performing maintenance tasks includ‐
ing compaction and repair on SSTables in object storage. Compaction and repair
are compute-intensive tasks that experienced Cassandra operators have histori‐
cally scheduled for off-peak hours to limit their impact on cluster performance.
In Astra DB, these tasks can be performed at any time the need arises without
impacting query performance. The work is handled by a pool of Compaction
Service instances which can scale up or down independently to generate repaired,
compacted SSTables which are immediately accessible to Data Services.

IAM Service
All incoming application requests are routed through the Identity and Access
Management (IAM) Service, which uses a standard set of roles and permissions
defined in the control plane. While Cassandra has long had a pluggable architec‐
ture for authentication and authorization, factoring this out into its own micro‐
service allows for more flexibility and support for additional providers such as
Okta.

The data plane includes additional services which have been omitted from Figure 7-4
for simplicity, including a Commitlog Replayer Service for recovery of failed Data
Service instances, and an Autoscaling Service which uses analytics and machine
learning to recommend to the operator when to scale the number of instances of each
service up or down.

Figure 7-5 shows what a typical DBInstallation looks like in terms of Kubernetes
resources. Let’s walk through a few typical interactions focusing on individual instan‐
ces of key services to demonstrate how each resource plays its part.

A Kubernetes Ingress is configured for each cluster to manage incoming requests
from client applications (1) and route requests to Coordinator Services by the tenant
using a Kubernetes Service (2).

Serverless Cassandra with DataStax Astra DB | 185

Figure 7-5. Astra DB cluster in Kubernetes

The Coordinator Service is a stateless service managed by a Deployment (3) which
delegates authentication and authorization checks on each call to the IAM Service (4).

Authorized requests are then routed to one or more Data Services based on the
tenant, again using a Kubernetes Service (5).

Data Services are managed using StatefulSets (6), which are used to assign each
instance to a local PersistentVolume used for managing intermediate datafiles such as
the commit log, which is populated immediately on writes. When possible, reads are
served directly from in-memory data structures.

As is typical for Cassandra and other LSM tree storage engines, the Data Service
occasionally writes SSTable files out to a persistent store (7). For Astra DB, that
persistent store is an external object store managed by the cloud provider for high
availability. A separate object storage bucket is used per tenant to ensure data privacy.

186 | Chapter 7: The Kubernetes Native Database

The Compaction Service can perform compaction and repair on SSTables in the
object store asynchronously (8), with no impact to write and read queries.

Astra DB also supports multiregion database clusters, which by definition span multi‐
ple Kubernetes clusters. Coordinator and Data Services are deployed across Datacen‐
ters (cloud regions) and racks (availability zones) using an approach similar to that
described for K8ssandra in “Deploying Multicluster Applications in Kubernetes” on
page 159.

Astra DB’s microservice architecture allows it to make more optimal use of compute
and storage resources and isolate compute-intensive operations, leading to overall
cost savings to operate Cassandra clusters in the cloud. These cost savings are exten‐
ded by the addition of multitenant features that allow each cluster to be shared
across multiple tenants. The Astra DB whitepaper describes a technique called shuffle
sharding which is used to match each tenant to a subset of the available Coordinator
and Data Services, effectively creating a separate Cassandra token ring per tenant. As
the population of tenants in an Astra DB instance changes, this topology can be easily
updated to rebalance load without downtime, and larger tenants can be configured
to use their own dedicated databases (DBInstallations). This approach minimizes cost
while meeting SLAs for performance and availability.

Building a Serverless Cassandra
With Jake Luciani, Engineering Leader, DataStax

Cassandra has always been considered a cloud native database, but it’s not Kubernetes
native. The K8ssandra project represents a first step in the direction of making Cas‐
sandra more Kubernetes native. It’s a systematic way to run Cassandra on Kubernetes
in a more traditional cloud native way, but it represents more of a “lift and shift”
approach. The Astra DB approach is more like throwing all of our bags on the
Kubernetes bus. It’s a version of Cassandra that you can’t run without Kubernetes.

We realized early on in the process of building Astra DB that we had to make some
modifications to Cassandra’s architecture to make it work in an even more cloud
native way. The cost of running stateful systems in the cloud can get very expensive
if you do it the wrong way. If you focus on optimizing for cost, you’ll actually
end up with the most cloud native solution, because the services that are cheap in
the clouds are the ones that have become the most commoditized. They’re also the
most hardened parts of the system. By standing on the shoulders of proven cloud
technologies like object storage and etcd, you’ll end up with a more reliable solution.

We often refer to Astra DB as a serverless database, which came from the original
inspiration for the project: “How do we make Cassandra more serverless?” Serverless
is a term for techniques engineers use in the cloud to make applications more scalable
and stateless. The first breakthrough was separating compute from storage. Storing
SSTables as immutable data on the object store allows us to scale our IOPS the same

Serverless Cassandra with DataStax Astra DB | 187

https://oreil.ly/Zq0yc

way we scale our processing engine. You can remove any component, and it doesn’t
matter to the system. Just as you can scale up lambda serverless functions, you can
scale up your database.

The topology is completely ephemeral, just like Cassandra; it can change on the fly.
Cassandra has traditionally used a gossip-type protocol to coordinate topology and
replicate state across nodes in an eventually consistent way. But since Cassandra was
first built, systems like etcd have come along that do a great job of maintaining
metadata about schema and topology in a transactional way. etcd is a stateful service
in its own right, but we use it only as a way to transition from one state to the next.
The object store is ultimately the source of truth for the entire system. You can lose an
entire Kubernetes cluster with all of the databases running on it, rebuild the cluster,
wipe the disks, and bring the whole system back. This is a great feeling when you
go to sleep at night. Currently, we have to run our own etcd inside Kubernetes, even
though Kubernetes runs its own etcd cluster. It would be great if we could utilize
that infrastructure that’s already running. Instead, we’ve had to build up our own etcd
expertise to make sure we know how to run it.

We use StatefulSets to manage the Cassandra nodes in each availability zone. State‐
fulSets provide the exact behavior we need in terms of scaling up and down in a
fixed order. Although we usually use only local ephemeral disks and the local path
provisioner, we’re not precluded from using a PVC with persistent storage if we
needed to; it would just be more expensive. To perform upgrades, we create an
entire StatefulSet with new Cassandra nodes. Once all of the nodes have joined, we
can delete the old StatefulSet. We treat the StatefulSets as immutable infrastructure,
throwing them away and starting over.

One big problem with data on Kubernetes is the rough edges in working with
attached disks. Many databases need to stripe disks before using them. On Kuber‐
netes, this means mounting volumes as raw disks and then striping them during Pod
startup. To scale the available IOPS, you have to attach more raw disks and stripe
them as well. We avoided this problem in Astra DB by going all in on object storage
and local ephemeral disks. The ephemeral disks are just a cache of what’s in the object
storage, but they give us the IOPS we need. Cassandra uses ann LSM-tree style of
storage engine, similar to RocksDB. This provides a great opportunity for a cloud
native separation of disk and storage, because the datafiles are immutable. We never
need to perform in-place updates of data on disk, which works out well because
object storage doesn’t allow that anyway. Compaction can run as a separate process
and scale on its own right, which keeps the reads fast.

Another challenge with Kubernetes is choosing the right VM types and figuring
out how to map Pods to them efficiently. Unfortunately, the Kubernetes APIs are
decoupled from the underlying cloud provider capabilities. You have to do a lot of
math in your head to set up quotas and node groups, and we haven’t even gotten to
disks. There’s a massive market opportunity out there for someone who can solve this
problem.

188 | Chapter 7: The Kubernetes Native Database

When you’re running a SaaS, the way you lower prices and keep margins is by
being as efficient as possible. For us, this means multitenancy and the ability to shift
resources between tenants based on usage. We use a giant, shared pool of Pods and
resources, which enables us to move users and their data to different parts of the fleet.
This allows us to provide a usage-based pricing model for developers who just want
to use it and go, and it empowers them to build cool applications.

Zooming back out, Kubernetes did a great job with stateless services from the begin‐
ning, but stateful workloads are harder. People in Kubernetes want to solve this with
changes to Kubernetes, and people who build infrastructure want to solve this in the
infrastructure. We’ll get there eventually through a combination of the two. In the
meantime, we’re circumventing the issue by using the immutable systems that work
well on Kubernetes and moving the state out into object storage. This is the way
open source technology works. People try things and make progress. Adopting a new
architecture can be a big risk, but once you do, the payoff can be huge.

In this section, we’ve focused on the architecture Astra DB uses to provide a multi‐
tenant, serverless Cassandra that embodies both cloud native and Kubernetes native
principles using a completely different style of deployment. This continues the tra‐
dition of the Amazon Dynamo and Google BigTable papers in generating public
discussion around novel database architectures. In addition, several open source
projects mentioned in this book including Cass Operator, K8ssandra, and Stargate
trace their origins to Astra DB. A lot of innovation is going on in areas such as
the core database, control plane, change data capture, streaming integration, data
migration, and more, so look for more open source contributions and architecture
proposals from this team in the future.

What to Look for in a Kubernetes Native Database
After everything you’ve learned in the past few chapters about what it takes to deploy
and manage various databases on Kubernetes, we are in a great position to define
what you should look for in a Kubernetes native database.

Basic Requirements
Following our cloud native data principles, the following are a few areas that should
be considered basic requirements:

Maximum leverage of Kubernetes APIs
The database should be as tightly integrated with Kubernetes APIs as possible
(for example, using PersistentVolumes for both local and remote storage, using
Services for routing rather than maintaining lists of IPs of other nodes, and
so on). Kubernetes extension points described in Chapter 5 should be used to
supplement built-in Kubernetes functionality.

What to Look for in a Kubernetes Native Database | 189

In some areas, the existing Kubernetes APIs may not provide the exact behavior
required for a given database or other application, as demonstrated by the cre‐
ation of alternate StatefulSet implementations by the Vitess and TiDB projects.
In these cases, every effort should be made to donate improvements back to the
Kubernetes project.

Automated, declarative management via operators
Databases should be deployed and managed on Kubernetes using operators and
custom resources. Operators should serve as the primary control plane elements
for managing databases. While it’s arguably helpful to have command-line tools
or kubectl extensions that allow DBAs to intervene manually to optimize data‐
base performance and fix issues, these are ultimately functions that should be
performed by an operator as it achieves the higher levels of maturity discussed in
Chapter 5.

The goal should be that all required changes to a database can be accomplished
by updating the desired state in a custom resource and letting the operator
handle the rest. We’ll be in a great place when we can configure a database in
terms of service-level objectives such as latency, throughput, availability, and cost
per unit. Operators can determine how many database nodes are needed, what
compute and storage tiers to use, when to perform backups, and so on.

Observable through standard APIs
We’re beginning to see common expectations for observability for data infra‐
structure on Kubernetes in terms of the familiar triad of metrics, logs, and
tracing. The Prometheus-Grafana stack is somewhat of a de facto standard for
metrics collection and visualization, with exposure of metrics from database
services using the Prometheus format as a minimum criteria. Projects providing
Prometheus integration should be flexible enough to provide their own dedicated
stack, or push metrics to an existing installation shared with other applications.

Logs from all database application containers should be pushed to standard
output (stdout) using sidecars if necessary—so they can be collected by log
aggregation services. While it may take longer to see adoption for tracing, the
ability to follow individual client requests through application calls down into the
database tier through APIs such as OpenTracing will be an extremely powerful
debugging tool for future cloud native applications.

Secure by default
The Kubernetes project itself provides a great example of what it means to be
secure by default—for example, by exposing access to ports on Pods and contain‐
ers only when specifically enabled, and by providing primitives like Secrets that
we can use to protect access to login credentials or sensitive configuration data.

190 | Chapter 7: The Kubernetes Native Database

Databases and other infrastructure need to make use of these tools and adopt
industry standards and best practices for zero trust (including changing default
administrator credentials), limiting exposure of application and management
APIs. Exposed APIs should prefer encrypted protocols such as HTTPS. Data
stored in PersistentVolumes should be encrypted, whether this encryption is
performed by the application, the database, or the StorageClass provider. Audit
logs should be provided as part of application logging, especially with respect to
actions that configure user access.

To summarize, a Kubernetes native database is sympathetic to the way that Kuber‐
netes works. It maximizes reuse of Kubernetes built-in capabilities instead of bringing
along its own set of duplicative supporting infrastructure. The experience of using a
Kubernetes native database is therefore very much like using Kubernetes itself.

The Future of Kubernetes Native
As these basic requirements and more advanced expectations for what it means to be
Kubernetes native solidify, what comes next? We’re starting to see common patterns
within projects deploying databases on Kubernetes that could point to where things
are headed in the future. These are admittedly a bit fuzzier, but let’s try to bring a
couple of them into focus.

Scalability through multidimensional architectures
You may have noticed the repetition of several terms throughout the past few
chapters such as multicluster, multitenancy, microservices, and serverless. A common
thread uniting these terms is that they represent architectural approaches to scalabil‐
ity, as shown in Figure 7-6.

Figure 7-6. Architectural approaches for scaling in multiple dimensions

What to Look for in a Kubernetes Native Database | 191

Consider how each of these approaches provides an independent axis for scalability.
The visualization in Figure 7-6 depicts the impact of your application as a three-
dimensional surface that grows as you scale along each axis:

Microservice architectures
Microservice architectures break the various functions of a database into inde‐
pendently scalable services. The serverless approach builds on this, encouraging
the isolation of persistent state to a limited number of stateful services or even
external services as much as possible. Kubernetes storage APIs in the Persistent‐
Volume subsystem make it possible to leverage both local and networked storage
options. These trends allow a true separation of compute and storage, and scale
these resources independently.

Multicluster
Multicluster refers to the ability to scale an application across multiple Kuber‐
netes clusters. Along with related terms like multiregion, multi-datacenter, and
multicloud, this implies expanding the geographic footprint of the capabilities
provided across potentially heterogeneous environments. This distribution of
capability has positive implications for meeting users where they are with min‐
imum latency, cloud provider cost optimization, and disaster recovery. As we
discussed in Chapter 6, Kubernetes has historically not been as strong in its sup‐
port for cross-cluster networking and service discovery. It will be interesting to
track how databases and other applications take advantage of expected advances
in Kubernetes federation in the coming years.

Multitenancy
This is the ability to share infrastructure between multiple users to achieve the
most efficient use of resources. As the public cloud providers have demonstrated
in their IaaS offerings, a multitenant approach can be very effective at providing
users a low-cost, low-risk access to infrastructure for innovative new projects,
and then providing additional resources as these applications grow. Adopting a
multitenant approach for data infrastructure has great potentiial value as well, so
long as security guarantees are properly met and there is a seamless transition
path to dedicated infrastructure for high-volume users before they become “noisy
neighbors.” At this point in time, Kubernetes does not provide explicit support
for multitenancy, although Namespaces can be a useful tool for providing dedica‐
ted resources for specific users.

While you may not have immediate need for all three of these axes of scalability for
applications or data infrastructure you’re building, consider how growing in each of
them can enhance the overall value you’re offering the world.

192 | Chapter 7: The Kubernetes Native Database

Community-focused innovation through open source and cloud services
Another pattern you may have noticed in our narrative is the continual innovation
loop between open source database projects and DBaaS offerings. PingCAP took the
open source MySQL and ClickHouse databases, created a database service leveraging
Kubernetes to help it manage the databases at scale, and then released open source
projects including TiDB and TiFlash. DataStax took open source Cassandra, factored
it into microservices, added an API layer, and deployed it on Kubernetes for its
Astra DB, and has created multiple open source projects including Cass Operator,
K8ssandra, and Stargate. In the spirit of Dynamo, BigTable, Calvin and other papers,
these companies have open source architectures as well.

This innovation loop mirrors that of the larger Kubernetes community, in which
the major cloud providers and storage vendors have helped drive the maturation
of the core Kubernetes control plane and PersistentVolume subsystem, respectively.
It’s interesting to observe that the highest momentum and fastest cycle time occurs
within innovation loops that center around cloud services, rather than around the
classic open core model focused on enterprise versions of open source projects.

As a software vendor, providing a cloud service allows you to iterate and evaluate
new architectures and features more quickly. Flowing these innovations back to open
source allows you to grow adoption by supporting a flexible consumption model.
Both “run it yourself ” and “rent it from us” become legitimate deployment options
for your customers, with the ability to flex between approaches for different use cases.
Customers gain confidence in the overall maturity and security of your technology,
knowing that the open source version they can inspect and contribute to is largely the
same as what you are running in your DBaaS.

A final side effect of these innovation trends is an implicit pull toward proven
architectures and components. Consider these examples:

• etcd is used as a metadata store across multiple projects we’ve examined in this•
book, including Vitess and Astra DB.

• TiDB leverages the architecture of F1, implemented the Raft consensus protocol,•
and extended the ClickHouse columnar store.

• Astra DB leverages both the PersistentVolume subsystem and S3-compliant•
object storage.

Instead of inventing new technologies to solve problems like metadata management
and distributed transactions, these projects are investing their innovation in new fea‐
tures, developer experience, and the scalability axes we’ve examined in this chapter.

What to Look for in a Kubernetes Native Database | 193

Summary
In this chapter, we’ve taken a deep look at TiDB and Astra DB to search out what
makes them Kubernetes native. What was the point of this exercise? Our hope is
that this analysis provides a deeper understanding to help consumers ask more
insightful questions about the data infrastructure they are consuming, and to help
those building data infrastructure and ecosystems to create technology that meets
those expectations. We believe that data infrastructure that is not only cloud native
but also Kubernetes native will lead to the best outcomes for everyone in terms of
performance, availability, and cost.

194 | Chapter 7: The Kubernetes Native Database

CHAPTER 8

Streaming Data on Kubernetes

When you think about data infrastructure, persistence is the first thing that comes to
mind for many—storing the state of running applications. Accordingly, our focus up
to this point has been on databases and storage. It’s now time to consider the other
aspects of the cloud native data stack.

For those of you managing data pipelines, streaming may be your starting point,
with other parts of your data infrastructure being of secondary concern. Regardless
of your starting place, data movement is a vitally important part of the overall data
stack. In this chapter, we’ll examine how to use streaming technologies in Kubernetes
to share data securely and reliably in your cloud native applications.

Introduction to Streaming
In Chapter 1, we defined streaming as the function of moving data from one point
to another and, in some cases, processing data in transit. The history of streaming
is almost as long as that of persistence. As data was pooling in various isolated
stores, it became evident that moving data reliably was just as important as storing
data reliably. In those days, it was called messaging. Data was transferred slowly but
deliberately, which resembled something closer to postal mail. Messaging infrastruc‐
ture put data in a place where it could be read asynchronously, in order, with delivery
guarantees. This met a critical need when using more than one computer and is one
of the foundations of distributed computing.

Modern application requirements have evolved from what was known as messaging
into today’s definition of streaming. Typically, this means managing large volumes of
data that require more immediate processing, which we call near real-time. Ordering
and delivery guarantees become a critically important feature in the distributed
applications deployed in Kubernetes and in many cases are a key enabler of the scale

195

required. How can adding more infrastructure complexity help scale? By providing
an orderly way to manage the flow from the creation of data to where it can be used
and stored. Rarely are streams used as the source of truth, but more importantly, they
are used as the conduit of truth.

There is a lot of software and terminology around streaming that can confuse first-
time users. As with any complex topic, decomposing the parts can be helpful as we
build understanding. There are three areas to evaluate when choosing a streaming
system for your use case:

• Types of delivery•
• Delivery guarantees•
• Feature scope for streaming•

Let’s take a closer look at each of these areas.

Types of Delivery
To use streaming in your application, you will need to understand the delivery meth‐
ods available to you from the long choice list of streaming systems. You will need
to understand your application requirements to efficiently plan how data flows from
producer to consumer. For example, “Does my consumer need exclusive access?” The
answer will drive which system fits the requirements. Figure 8-1 shows two of the
most common choices in streaming systems: point to point and publish/subscribe:

Point to point
In this data flow, data created by the producer is passed through the broker and
then to a single consumer in a one-to-one relationship. This is primarily used as
a way to decouple direct connections from producer to consumer. It serves as an
excellent feature for resilience as consumers can be removed and added with no
data loss. At the same time, the broker maintains the order and last message read,
addressable by the consumer using an offset.

Publish/subscribe (pub/sub)
In this delivery method, the broker serves as a distribution hub for a single
producer and one or more consumers in a one-to-many relationship. Consumers
subscribe to a topic and receive notifications for any new messages created by the
producer—a critical component for reactive or event-driven architectures.

196 | Chapter 8: Streaming Data on Kubernetes

Figure 8-1. Delivery types

Delivery Guarantees
In conjunction with the delivery types, the broker maintains delivery guarantees from
producer to consumer per message type in an agreement called a contract. The typical
delivery types are shown in Figure 8-2: at-most-once, at-least-once, and exactly once.
The diagram shows the important relationship between when the producer sends a
message and the expectation of how the consumer receives the message:

At-most-once
The lowest guarantee is used to avoid any potential data duplication due to tran‐
sient errors that can happen in distributed systems. For example, the producer
could get a timeout on send. However, the message may have just gone through
without acknowledgment. In this gray area, the safest choice to avoid duplicate
data will be for the producer to not attempt a resend and proceed. The critical
downside to understand is that data loss is possible by design.

At-least-once
This guarantee is the opposite side of at-most-once. Data created by the producer
is guaranteed to be picked up by a consumer. The added aspect allows for rede‐
livery any number of times after the first. For example, this might be used with
a unique key such as a date stamp or ID number that is considered idempotent
on the consumer side that multiple processing won’t impact. The consumer will
always see data delivered by the producer but could see it numerous times. Your
application will need to account for this possibility.

Exactly once
The strictest of the three guarantees, this means that data created by a producer
will be delivered only one time to a producer—for example, in exact transactions
such as money movement, which require subtractions or additions to be deliv‐
ered and processed one time to avoid problems. This guarantee puts a more

Introduction to Streaming | 197

significant burden on the broker to maintain, so you will need to adjust the
resources allocated to the broker and your expected throughput.

Figure 8-2. Delivery guarantees

Exercise care in selecting delivery guarantees for each type of message. Delivery
guarantees are ones to carefully evaluate as they can have unexpected downstream
effects on the consumer if not wholly understood. Questions like “Can my application
handle duplicate messages?” need a good answer. “Maybe” is not good enough.

Feature Scope
Many streaming technologies are available, some of which have been around for
quite a few years. On the surface, these technologies may appear similar, but each
solves a different problem because of new requirements. The majority are open
source projects, so each has a community of like-minded individuals who join in
and advance the project. Just as many different persistent data stores fit under the
large umbrella of “database,” features under the heading of data streaming can vary
significantly.

Feature scope is likely the most important selection criterion when evaluating which
streaming technology to use. Still, you should also challenge yourself to add suitabil‐
ity for Kubernetes as a criterion and consider whether more complex features are
worth the added resource cost. Fortunately, the price for getting your decision wrong
the first time is relatively low. Streaming data systems tend to be some of the easiest
to migrate because of their ephemeral nature. The deeper into your feature stack the
streaming technology goes, the harder it is to move. The scope of streaming features
can be broken into the two large buckets shown in Figure 8-3:

198 | Chapter 8: Streaming Data on Kubernetes

Message broker
This is the simplest form of streaming technology that facilitates the moving of
data from one point to another with one or more of the delivery methods and
guarantees listed previously. It’s easy to discount this feature’s simplistic appear‐
ance, but it’s the backbone of modern cloud native applications. It’s like saying
FedEx is just a package delivery company, but imagine what would happen to the
world economy if it stopped for even one day? Example OSS message brokers
include Apache Kafka, Apache Pulsar, RabbitMQ, and Apache ActiveMQ.

Stream analytics
In some cases, the best or only time to analyze data is while it is moving. Waiting
for data to persist and then begin the analysis could be far too late, and the
insight’s value is almost useless. Consider fraud detection. The only opportunity
to stop the fraudulent activity is when it’s happening; waiting for a report to run
the next day just doesn’t work. Example OSS stream analytics systems include the
Apache prooducts Spark, Flink, Storm, Kafka Streams, and Pulsar.

Figure 8-3. Streaming types

The Role of Streaming in Kubernetes
Now that we have covered the basic terminology, how does streaming fit into a
cloud native application running on Kubernetes? Database applications follow the
pattern of create, read, update and delete (CRUD). For a developer, the database
provides a single location for data. The addition of streaming assumes some sort of
motion in the data from one place to another. Data may be short-lived if used to
create new data. Some data may be transformed in transit, and some may eventually
be persisted. Streaming assumes a distributed architecture, and the way to scale a
streaming system is to manage its resource allocation of compute, network, and
storage. This is landing right into the sweet spot of cloud native architecture. In the
case of stream-driven applications in Kubernetes, you’re managing the reliable flow of
data in an environment that can change over time. Allocate what you need when you
need it.

The Role of Streaming in Kubernetes | 199

Streaming and Data Engineering

Data engineering is a relatively new and fast-growing discipline,
so we want to be sure to define it. This is especially applicable to
the practice of data streaming. Data engineers are concerned with
the efficient movement of data in complex environments. The two
T’s are important in this case: transport and transformation. The
role of the data scientist is to derive meaning and insights from
data. In contrast, the data engineer is building the pipeline that
collects data from various locations, organizes it, and in most cases,
persists to something like a data lake. Data engineers work with
application developers and data scientists to make sure application
requirements are met in the increasingly distributed nature of data.

The most critical aspect of your speed and agility is how well your tools work
together. When developers dream up new applications, how fast can that idea turn
into a production deployment? Deploying and managing separate infrastructure
(streaming, persistence, microservices) for one application is burdensome and prone
to error. When asking why you would want to add streaming into your cloud native
stack, you should consider the cost of not integrating your entire stack in terms
of technical debt. Creating custom ways of moving data puts a huge burden on
application and infrastructure teams. Data streaming tools are built for a specific
purpose, with large communities of users and vendors to aid in your success.

Cloud Native Streaming Is Game-Changing, but Remember the
Fundamentals

With Jesse Anderson, Managing Director, Big Data Institute

What makes streaming a good fit for Kubernetes? If you think about which compo‐
nent in your system is the most dynamic, it’s probably streaming. Your database won’t
have as much need to scale up and down in the course of a day. The typical demand
curve in a 24-hour period is going to require more scaling for streaming, especially
the processing. If you’re moving to Kubernetes from VMs, you will be tempted to
copy your exact environment into Pods and forget about it. By doing this, you are
missing the primary value of cloud native for streaming workloads. In my experience,
teams pre-provisioning for expected loads typically end up wasting over 50% of
resources by over-provisioning. The best way to manage cost is to add resources
when needed and release them when you are finished. The real measurement of
success is when end users have no idea that infrastructure is coming and going. They
get a smooth experience and a consistent service level. On the other hand, artificially
constraining your streaming capacity because of costs can reduce response times and
degrade service levels. In the worst case, the real-time processing window falls behind
without any way to catch up.

200 | Chapter 8: Streaming Data on Kubernetes

The challenge in deploying streaming workloads in Kubernetes is one of matching
system architectures to balance provisioning and service levels. If the technology
wasn’t designed with the idea of dynamic workload matching, it could take a lot of
effort to force it to do something it wasn’t designed to accomplish. Kafka is a highly
scalable distributed system, but the idea of scaling down wasn’t part of the initial
design. A Kafka cluster is designed to maintain the declared operational state. If ten
brokers have been deployed and one is lost, Kafka tries to return to the state of ten
brokers. While this is a critically important feature for resiliency, it takes a different
approach to achieve elasticity. Pulsar is an example of a streaming system that has
been designed with cloud native thinking to handle dynamic workloads from day
one. Flink is a stream-processing system designed with the same considerations. Used
in combination, a deployment will consume compute and storage at different times
and in different volumes. That is a closer match to the Kubernetes architecture.

Storage has been an area of rapid change for the Kubernetes project but one that you
should avoid making assumptions about in your streaming deployments. When the
data you are streaming needs to be persisted, where is it going? A great resilience
question to ask is “What happens if I mistakenly delete my Kubernetes cluster?” I
have worked with teams deploying streaming on Kubernetes that were unknowingly
using ephemeral storage by mistake. You have to make sure you are thinking about
the durability of your storage from the earliest stages of your move to Kubernetes.
Streaming requires a higher level of operational excellence. Having five nines of
uptime or better isn’t optional. In contrast to a batch system where downtime isn’t a
high impact, you can just rerun the job if there is a failure. With streaming, if you
are down, you’ve potentially lost data. Having an operational outage due to losing a
StatefulSet can be a big deal.

The final thing to consider is your disaster recovery plan. Do not assume that cloud
native deployments eliminate potentially devastating failures. You can mitigate many
of them, but in my experience, some amount of failure is inevitable, which is why
planning is so important. At a minimum, be ready for the various failures that
can happen with infrastructure, such as loss of a Pod, a StatefulSet, or an entire
Kubernetes cluster. The most common and impactful failures are due to human error,
like purposefully deleting data thinking you are working in a QA environment, or
getting a configuration wrong. It happens to everyone, and we just need to plan for it.

For data engineers and site reliability engineers (SREs), your planning and imple‐
mentation of streaming in Kubernetes can greatly impact your organization. Cloud
native data should allow for more agility and speed while squeezing out all the effi‐
ciency you can get. As a reader of this book, you are already on your way to thinking
differently about your infrastructure. Taking some advice from Jesse Anderson, there
are two areas you should be focusing on as you begin your journey into streaming
data on Kubernetes:

The Role of Streaming in Kubernetes | 201

Resource allocation
Are you planning for peaks as well as the valleys? As you’ll recall from Chapter 1,
elasticity is one of the more challenging aspects of cloud native data to get right.
Scaling up is a commonly solved problem in large-scale systems, but scaling
down can potentially result in data loss, especially with streaming systems. Traffic
to resources needs to be redirected before they are decommissioned, and any
data they are managing locally will need to be accounted for in other parts of
the system. The risk involved with elasticity is what keeps it from being widely
used, and the result is a lot of unused capacity. Commit yourself to the idea that
resources should never be idle and build streaming systems that use what they
need and no more.

Disaster recovery planning
Moving data efficiently is an important problem to solve, but just as important
is how to manage inevitable failure. Without understanding your data flows and
durability requirements, you can’t just rely on Kubernetes to handle recovery.
Disaster recovery is about more than backing up data. How are Pods scheduled
so that physical server failure has a reduced impact? Can you benefit from
geographic redundancy? Are you clear on where data is persisted and understand
the durability of those storage systems? And finally, do you have a clear plan to
restore systems after a failure? In all cases, writing down the procedure is the first
step, but testing those procedures is the difference between success and failure.

We’ve covered the what and why of streaming data on Kubernetes, and it’s time we
start looking at the how with a particular focus on cloud native deployments. We’ll
give a quick overview of how to install these technologies on Kubernetes and high‐
light some important details to aid your planning. You’ve already learned in previous
chapters how to use many of the Kubernetes resources we’ll need, so we’ll speed up
the pace a bit. Let’s get started on the first cloud native streaming technology.

Streaming on Kubernetes with Apache Pulsar
Apache Pulsar is an exciting project to watch for cloud native streaming applications.
Streaming software was mostly built in an era before Kubernetes and cloud native
architectures. Pulsar was originally developed at Yahoo!, which is no stranger to
high-scale cloud native workloads. Donated to the Apache Software Foundation, it
was accepted as a top-level project in 2018. Additional projects, like Apache Kafka
or RabbitMQ, may suit your application’s needs, but they will require more planning
and well-written operators to function at the level of efficiency of Pulsar. In terms
of the streaming definitions we covered previously, Pulsar supports the following
characteristics:

202 | Chapter 8: Streaming Data on Kubernetes

• Types of delivery: one-to-one and pub/sub•
• Delivery guarantees: at-least-once, at-most-once, exactly once•
• Feature scope for streaming: message broker, analytics (through functions)•

So what makes Pulsar a good fit for Kubernetes?

We use Kubernetes to create virtual datacenters to efficiently use compute, network,
and storage. Pulsar was designed from the beginning with a separation of com‐
pute and storage resource types linked by the network, similar to a microservices
architecture.

These resources can even span multiple Kubernetes clusters or physical datacenters,
as shown in Figure 8-4. Deployment options give operators the flexibility to install
and scale a running Pulsar cluster based on use case and workload. Pulsar was also
designed with multitenancy in mind, making a big efficiency difference in large
deployments. Instead of installing a separate Pulsar instance per application, many
applications (tenants) can use one Pulsar instance with guardrails to prevent resource
contention. Finally, built-in storage tiering creates automated alternatives for storage
persistence as data ages, and lower-cost storage can be utilized.

Figure 8-4. Apache Pulsar architecture

Streaming on Kubernetes with Apache Pulsar | 203

Pulsar’s highest level of abstraction is an instance that consists of one or more clus‐
ters. We call the local logical administration domain a cluster and deploy in a Kuber‐
netes cluster, where we’ll concentrate our attention. Clusters can share metadata and
configuration, allowing producers and consumers to see a single system regardless
of location. Each cluster is made of several parts acting in concert that primarily
consume either compute or storage. They are:

Broker (compute)
Producers and consumers pass messages via the broker, a stateless cluster com‐
ponent. This means it is purely a compute scaling unit and can be dynamically
allocated based on the number of tenants and connections. Brokers maintain an
HTTP endpoint used for client communication, which presents a few options for
network traffic in a Kubernetes deployment. When multiple clusters are used, the
brokers support replication between clusters in the instance. Brokers can run in
a memory-only configuration, or with Apache BookKeeper (labeled as bookies)
when message durability is required.

Apache BookKeeper (storage)
The BookKeeper project provides infrastructure for managing distributed write-
ahead logs. In Pulsar, the individual instances used are called bookies. The storage
unit is called a ledger; each topic can have one or more ledgers. Multiple bookie
instances provide load-balancing and failure protection. They also offer storage
tiering functionality, allowing operators to offer a mix of fast and long-term
storage options based on use case. When brokers interact with bookies, they
read and write to a topic ledger, an append-only data structure. Bookies provide
a single reference to the ledger but manage the replication and load balancing
behind the primary interface. In a Kubernetes environment, knowing where data
is stored is critical for maintaining resilience.

Apache ZooKeeper (compute)
ZooKeeper is a standalone project used in many distributed systems for coordi‐
nation, leader election, and metadata management. Pulsar uses ZooKeeper for
service coordination, similar to the way etcd is used in a Kubernetes cluster,
storing important metadata such as tenants, topics, and cluster configuration
state so that the brokers can remain stateless. Bookies use ZooKeeper for ledger
metadata and coordination between multiple storage nodes.

Proxy (network)
The proxy is a solution for dynamic environments like Kubernetes. Instead of
exposing every broker to HTTP traffic, the proxy serves as a gateway and creates
an Ingress route to the Pulsar cluster. As brokers are added and removed, the
proxy uses service discovery to keep the connections flowing to and from the
cluster. When using Pulsar in Kubernetes, the proxy service IP should be the
single access for your applications to a running Pulsar cluster.

204 | Chapter 8: Streaming Data on Kubernetes

Functions (compute)
Since Pulsar Functions operate independently and consume their own compute
resources, we chose not to include them in Figure 8-4. However, they’re worth
mentioning in this context because Pulsar Functions work in conjunction with
the message broker. When deployed, they take data from a topic, alter it with
user code, and return it to a different topic. The component added to a Pulsar
cluster is the worker, which accepts function runtimes on an ad hoc basis.
Operators can deploy Functions as a part of a larger cluster or standalone for
more fine-grained resource management.

Preparing Your Environment
When preparing to do your first installation, you need to make some choices. Since
every user will have unique needs, we recommend you check the official documen‐
tation for the most complete and up-to-date information on installing Pulsar in
Kubernetes before reading this section. The examples within this section will take a
closer look at the choices available and how they pertain to different cloud native
application use cases to help inform your decision making.

To begin, create a local clone directory of the Pulsar Helm chart repository:

git clone https://github.com/apache/pulsar-helm-chart

This subproject of Pulsar is well documented, with several helpful examples to follow.
When using Helm to deploy Pulsar, you will need a values.yaml file that contains all
of the options to customize your deployment. You can include as many parameters
as you want to change. The Pulsar Helm chart has a complete set of defaults for a
typical cluster that might work for you, but you will want to tune the values for your
specific environment. The examples directory has various deployment scenarios. If
you choose the default installation as described in the values-local-cluster.yaml file,
you’ll have a set of resources like that shown in Figure 8-5. As you can see, the
installation wraps the proxy and brokers in Deployments and presents a unified
service endpoint for applications.

Affinity is a mechanism built into Kubernetes to create rules for which Pods can and
cannot be colocated on the same physical node (if needed, refer to the more in-depth
discussion in Chapter 4). Pulsar, being a distributed system, has deployment require‐
ments for maximum resilience. An example is brokers. When multiple brokers are
deployed, each Pod should run on a different physical node in case of failure. If all
broker Pods were grouped on the same node and the node went down, the Pulsar
cluster would be unavailable. Kubernetes would still recover the runtime state and
restart the Pods. However, there would be downtime as they came back online.

Streaming on Kubernetes with Apache Pulsar | 205

https://oreil.ly/KCqT2
https://oreil.ly/KCqT2

Figure 8-5. A Simple Pulsar installation on Kubernetes

The easiest thing is not allowing Pods of the same type to group together onto the
same nodes. When enabled, anti-affinity will keep this from happening. If you are
running on a single-node system such as a desktop, disabling it will allow your cluster
to start without blocking based on affinity:

affinity:
 anti_affinity: true

Fine-grained control over Pulsar component replica counts lets you tailor your
deployment based on the use case. Each replica Pod consumes resources and should
be considered in the application’s lifecycle. For example, starting with a low number
of brokers and BookKeeper Pods can manage some level of traffic. Still, more replicas
can be added and configuration updated via Helm as traffic increases:

zookeeper:
 replicaCount: 1

bookkeeper:
 replicaCount: 1

broker:

206 | Chapter 8: Streaming Data on Kubernetes

 replicaCount: 1

proxy:
 replicaCount: 1

You now have a foundational understanding of how to reliably move data to and
from applications and outside of your Kubernetes cluster. Pulsar is a great fit for
cloud native application deployments because it can scale compute and storage inde‐
pendently. The declarative nature of deployments makes it easy for data engineers
and SREs to deploy easily with consistency. Now that we have the means for data
communication, let’s take it a step further with the right kind of network security.

Securing Communications by Default with cert-manager
An unfortunate reality we face at the end of product development is what gets left to
complete: security or documentation. Unfortunately, Kubernetes doesn’t have much
in the way of building documentation, but when it comes to security, there has been
some great progress on starting earlier without compromise!

As you can see, installing Pulsar has created a lot of infrastructure and communica‐
tion between the elements. High traffic volume is a typical situation. When we build
out virtual datacenters in Kubernetes, it will create a lot of internode and external
network traffic. All traffic should be encrypted with Transport Layer Security (TLS)
and Secure Socket Layer (SSL) using X.509 certificates. The most important part
of this system is the certificate authority (CA). In a public key infrastructure (PKI)
arrangement acts as a trusted third party that digitally signs certificates used to
create a chain of trust between two entities. Going through the procedure to have a
certificate issued by a CA historically has been a manual and arduous process, which
unfortunately has led to a lack of secure communications in cloud-based applications.

cert-manager is a tool that uses the Automated Certificate Management Environment
(ACME) protocol to add certificate management seamlessly to your Kubernetes infra‐
structure. We should always use TLS to secure the data moving from one service
to another for our streaming application. The cert-manager project is arguably one
of the most critical pieces of your Kubernetes infrastructure that you will eventually
forget about. That’s the hallmark of a project that fits the moniker of “it just works.”

Adding TLS to your Pulsar deployment has been made incredibly easy with just a few
configuration steps. Before installing Pulsar, you’ll need to set up the cert-manager
service inside the target Kubernetes cluster. First, add the cert-manager repo to your
local Helm installation:

helm repo add jetstack https://charts.jetstack.io

Streaming on Kubernetes with Apache Pulsar | 207

https://oreil.ly/YySn7
https://oreil.ly/JG794

What Is ACME?

When working with X.509 certificates, you’ll frequently see ref‐
erences to the Automated Certificate Management Environment
(ACME). ACME allows for automated deployment of certificates
between user infrastructure and certificate authorities. It was
designed by the Internet Security Research Group when it was
building its free certificate authority, Let’s Encrypt. It would be
putting it lightly to say this fantastic free service has been a game-
changer for cloud native infrastructure.

The installation process takes a few parameters, which you should make sure to use.
First is declaring a separate Namespace to keep the cert-manager neatly organized in
your virtual datacenter. The second is installing the CRD assets. This combination
allows you to create services that automate your certificate management:

helm install \
 cert-manager jetstack/cert-manager \
 --namespace cert-manager \
 --create-namespace \
 --set installCRDs=true

After the cert-manager is installed, you’ll then need to configure the certificate issuer
that will be called when new certificates are needed. You have many options based on
the environment you are operating in, and these are covered quite extensively in the
documentation. One of the custom resources created when installing cert-manager is
Issuer. The most basic Issuer is the selfsigned-issuer that can create a certificate
with a user-supplied private key. You can create a basic Issuer by applying the
following YAML configuration:

apiVersion: cert-manager.io/v1
kind: Issuer
metadata:
 name: selfsigned-issuer
 namespace: cert-manager
spec:
 selfSigned: {}

apiVersion: cert-manager.io/v1
kind: ClusterIssuer
metadata:
 name: selfsigned-cluster-issuer
spec:
 selfSigned: {}

When installing Pulsar with Helm, you can secure inter-service communication with
a few lines of YAML configuration. You can pick which services are secured by setting
the TLS enabled to true or false for each service in the YAML that defines your

208 | Chapter 8: Streaming Data on Kubernetes

Pulsar cluster. The examples provided by the project are quite large, so for brevity,
we’ll look at some key areas:

tls:
 # settings for generating certs for proxy
 proxy:
 enabled: true
 cert_name: tls-proxy
 # settings for generating certs for broker
 broker:
 enabled: true
 cert_name: tls-broker
 # settings for generating certs for bookies
 bookie:
 enabled: false
 cert_name: tls-bookie
 # settings for generating certs for zookeeper
 zookeeper:
 enabled: false
 cert_name: tls-zookeeper

Alternatively, you can secure the entire cluster with just one command:

tls:
 enabled: true

Later in your configuration file, you can use self-signing certificates to create TLS
connections between components:

issue selfsigning certs
certs:
 internal_issuer:
 enabled: true
 type: selfsigning

If you have been involved in securing infrastructure communication any time in the
past, you know the toil in working through all the steps and applying TLS. Inside
a Kubernetes virtual datacenter, you no longer have an excuse to leave network
communication unencrypted. With a few lines of configuration, everything is secured
and maintained.

cert-manager: Making Security Easy (So You’ll Just Use It)
With Josh van Leeuwen, Software Engineer, Jetstack

The cert-manager is a project born of necessity as our cloud native world grows.
Previously, you might have a bunch of VMs or bare metal running somewhere in
a ringed fence. You could get away with sticking an SSL certificate in the front
gateway and moving on. All of that has now changed, with the thousands or even
hundreds of thousands of machines that need to be secured in our cloud native
systems. With all of these small containers running microservices continually coming

Streaming on Kubernetes with Apache Pulsar | 209

and going, automation is the only way to manage the volume of changes. There is
no way a human can do that alone. Of course, this opens a new challenge of reliable
automation—one that Kubernetes has taken head-on.

Soon after the ACME protocol was created, custom resources and CRDs became
a feature in Kubernetes. cert-manager is a project that joins those two concepts,
providing a declarative way to represent what an X.509 certificate should look like
inside a Kubernetes Deployment. ACME happened at just the right time for the
Kubernetes Ingress use case, and the first use case for cert-manager was for ACME
SSL certificates. However, it quickly became apparent that this would not be the
only secure networking problem that needed solving in Kubernetes. Those growing
numbers of machines all need to talk to each other, and they all need some kind
of security in place, which is generally done with TLS. TLS certificates require the
concept of an issuer, and cert-manager was expanded to allow for different types of
issuers to automate the complete lifecycle further of those certificates.

Because it emerged so early in the project, cert-manager has become the de facto
X.509 provider and certificate manager for Kubernetes. With this comes a responsi‐
bility to make securing communications in Kubernetes easy. Security is only as good
as it is easy. If security is challenging to implement, it’s practically useless. Many
people don’t like GNU Privacy Guard (GPG), for these reasons—not because it’s nec‐
essarily flawed security-wise, but because it’s challenging to use. cert-manager should
continue to see wide adoption in cloud native applications. It makes everything secure
by default, with little intervention or minimal knowledge of how Rivest–Shamir–
Adleman (RSA) or TLS works. It’s a project that is easy to use and solves people’s
problems by default.

One thing that has made cert-manager easy for end users is having a well-defined API
to describe their application requirements in a simple way. It is a way of abstracting
the more complicated questions, such as “What does it mean to have a certificate
signed?” or “What is an issuer?” These APIs provide the guardrails to make sure
you do the right thing as much as possible. Some things still require planning and
thoughtfulness, such as not reusing private key passwords, which is allowed but
discouraged.

Guardrails and standardization are topics that need to become more prevalent in
other parts of Kubernetes. The declarative nature and extensibility of Kubernetes
are powerful tools, but with great power comes great responsibility. Different people
within an organization can make extension points in a Kubernetes cluster. With a
single command, you can have an endpoint exposed on the internet without even
realizing it. No single pane of glass is available to security professionals for those
extensions. Nor are there guardrails to prevent unexpected behaviors. Without proper
guardrails in place, it’s too easy to self-own quite badly. As Kubernetes matures, we’ll
need more ways to avoid unhappy accidents.

The cert-manager project is in an excellent state, being vendor-neutral and mature in
its current form. If you search the project changelog for the word “feature,” you’ll see

210 | Chapter 8: Streaming Data on Kubernetes

a decrease in occurrence in each successive release. This means we have a core API
that is useful and stable, which is an excellent place to be for a core security-based
project. The bulk of changes happening in the project are focused on taking advan‐
tage of this stable core API to add new issuers. This stability ensures that the project
stays up-to-date with the latest requirements without a disruptive breaking change.

As for the future, the cert-manager project will continue to work with the Kubernetes
community to continue the path of “default secure” and make security so easy that
it’s used universally. There are still some challenges to overcome, like how secrets are
stored and how to manage trust chains, and the momentum of Kubernetes practically
ensures that those are problems that will be solved shortly. If these are interesting
problems, I urge you to get involved in one of the many ways security professionals
can impact the future of Kubernetes.

cert-manager should be one of the first things you install in a new Kubernetes cluster.
The combination of project maturity and simplicity makes security the easy first
thing to add to your project instead of the last. This is true not only for Pulsar but for
every service you deploy in Kubernetes that requires network communication.

Using Helm to Deploy Apache Pulsar
Now that we have covered how to design a Pulsar cluster to maximize resources,
you can use Helm to carry out the deployment into Kubernetes. First, add the Pulsar
Helm repository:

helm repo add apache https://pulsar.apache.org/charts

One of the special requirements for a Helm install of Pulsar is preparing Kubernetes.
The Git repository you cloned earlier has a script that will run through all the prep‐
arations, such as creating the destination Namespace. The more complicated setup
is the roles with associated keys and tokens. These are important for inter-service
communication inside the Pulsar cluster. From the docs, you can invoke the prep
script by using this example:

./scripts/pulsar/prepare_helm_release.sh -n <k8s-namespace> -k <release-name>

Once the Kubernetes cluster has been prepared for Pulsar, the final installation can be
run. At this point, you should have a YAML configuration file with the settings you
need for your Pulsar use case as we described earlier. The helm install command
will take that config file and direct Kubernetes to meet the desired state you have
specified. When creating a new cluster, use initalize=true to create the base meta‐
data configuration in ZooKeeper:

helm install \
 --values <config yaml file> \
 --set initialize=true \

Streaming on Kubernetes with Apache Pulsar | 211

 --namespace <namespace from prepare script> \
 <pulsar cluster name> apache/pulsar

In a typical production deployment, you should expect the setup time to take 10
minutes or more. There are a lot of dependencies to walk through as ZooKeeper,
bookies, brokers, and finally, proxies are brought online and in order.

Stream Analytics with Apache Flink
Now, let’s look at a different type of streaming project that is quickly gaining popular‐
ity in cloud native deployments: Apache Flink. Flink is a system primarily designed
to focus on stream analytics at an incredible scale. As we discussed at the beginning
of the chapter, streaming systems come in many flavors, and this is a perfect example.
Flink has its competencies that overlap very little with other systems; in fact, it’s
widespread to see Pulsar and Flink deployed together to complement each other’s
strengths in a cloud native application.

As a streaming system, the following are available in Flink:

• Type of delivery: one-to-one•
• Delivery guarantee: exactly once•
• Feature scope for streaming: analytics•

The two main components of the Flink architecture are shown in Figure 8-6—the
JobManager and TaskManager:

JobManager
This is the control plane for any running Flink application code deployed. A
JobManager consumes CPU resources but only to maintain Job control; no actual
processing is done on the JobManager. In high availability (HA) mode, which is
exclusive to Flink running on Kubernetes, multiple standby JobManagers will be
provisioned but remain idle until the primary is no longer available.

TaskManager
This is where the work gets done on a running Flink job. The JobManger uses
TaskManagers to satisfy the chain of tasks needed in the application. A chain is
the order of operation. In some cases, these operations can be run in parallel,
and some need to be run in series. The TaskManger will run only one discrete
task and pass it on. Resource management can be controlled through the number
of TaskManagers in a cluster and execution slots per TaskManager. The current
guidance says that you should allocate one CPU to each TaskManager or slot.

212 | Chapter 8: Streaming Data on Kubernetes

Figure 8-6. Apache Flink architecture

The Flink project is designed for managing stateful computations, which should
cause you to immediately think of storage requirements. Every transaction in Flink
is guaranteed to be strongly consistent with no single point of failure. These are the
features you need when you are trying to build the kind of highly scalable systems
that Flink was designed to accomplish. There are two types of streaming, bounded
and unbounded:

Unbounded streaming
These streaming systems react to new data whenever the data arrives—there is
no endpoint where you can stop and analyze the data gathered. Every piece of
data received is independent. The use cases for this can be alerting on values or
counting when exactness is essential. Reactive processing can be very resource-
efficient.

Bounded streaming
This is also known as batch processing in other systems but is a specific case
within Flink. Bounded windows can be marked by time or specific values. In
the case of time windows, they can also slide forward, giving the ability to do
rolling updates on values. Resource considerations should be given based on the
data window size to be processed. The limit of the boundary size is constrained
mainly by memory.

One of the foundational tenets of Flink is a strong focus on operations. At the scale
required for cloud native applications, easy to use and deploy can be the difference
between using it or not. This includes core support for continuous deployment
workloads in Kubernetes and feature parity with cloud native applications in the
areas of reliability and observability:

Continuous deployment
The core unit of work for Flink is called a job. Jobs are Java or Scala programs
that define how the data is read, analyzed, and output. Jobs are chained together

Stream Analytics with Apache Flink | 213

and compiled into a JAR file to create a Flink application. Flink provides a
Docker image that encapsulates the application in a form that makes deployment
on Kubernetes an easy task and facilitates continuous deployment.

Reliability
Flink also has built-in support for savepoints, which makes updates easier by
pausing and resuming jobs before and after system updates. Savepoints can also
be used for fast recovery if a processing Pod fails mid-job. Tighter integration
with Kubernetes allows Flink to self-heal on failure by restoring Pods and restart‐
ing Jobs with savepoints.

Observability
Cluster metrics are instrumented to output in Prometheus format. Operations
teams can keep track of lifecycle events inside the Flink cluster with time-based
details. Application developers can expose custom metrics using the Flink metric
system for further integrated observability.

Flink provides a way for data teams to participate in the overall cloud native stack
while giving operators everything needed to manage the entire deployment. Applica‐
tion developers building microservices can share a CI/CD pipeline with developers
building the stream analytics of data generated from the application. As changes
occur in any part of the stack, they can be integration tested entirely and deployed
as a single unit. Teams can move faster with more confidence knowing there aren’t
disconnected requirements that may show up in production. This sort of outcome is
a solid argument to employ cloud native methodologies in your entire stack, so it’s
time to see how this is done.

Deploying Apache Flink on Kubernetes
When deploying a Flink cluster into a running Kubernetes cluster, there are a few
things to consider. The Flink project has gone the route of offering what it calls
“Kubernetes Native,” which programmatically installs the required Flink components
without kubectl or Helm. These choices may change in the future. Side projects in
the Flink ecosystem already bring a more typical experience that Kubernetes opera‐
tors might expect, including operators and Helm charts. For now, we will discuss the
official method endorsed by the project.

As shown in Figure 8-7, a running Flink cluster has two main components we’ll
deploy in Pods: the JobManager and TaskManager. These are the basic units, but
choosing which deployment mode is the critical consideration for your use case.
They dictate how compute and network resources are utilized. Another thing of note
is how to deploy on Kubernetes. As mentioned before, there are no official project
operators or Helm charts. The Flink distribution contains command-line tools that
will deploy into a running Kubernetes cluster based on the mode for your application.

214 | Chapter 8: Streaming Data on Kubernetes

https://oreil.ly/0x0IS
https://oreil.ly/0x0IS
https://flink.apache.org/downloads.html

Figure 8-7. Deploying Flink on Kubernetes

Figure 8-8 shows the modes available for deploying Flink clusters in Kubernetes:
Application Mode and Session Mode. Flink also supports a third mode called Per-Job
Mode, but this is not available for Kubernetes deployments, which leaves us with
Application Mode and Session Mode.

The selection of either Application Mode or Session Mode comes down to resource
management inside your Kubernetes cluster, so let’s look at both to make an informed
decision.

Application Mode isolates each Flink application into its own cluster. As a reminder,
a Flink application JAR can consist of multiple jobs chained together. The startup
cost of the cluster can be minimized with a single application initialization and Job
graph. Once deployed, resources are consumed for client traffic and execution of the
jobs in the application. Network traffic is much more efficient since there is only one
JobManager and client traffic can be multiplexed.

Stream Analytics with Apache Flink | 215

Figure 8-8. Apache Flink modes

To start in Application Mode, you invoke the flink command with the target of
kubernetes-application. You will need the name of the running Kubernetes cluster
accessible via kubectl. The application to be run is contained in a Docker image,
and the path to the JAR file supplied in the command line. Once started, the Flink
cluster is created, application code is initialized, and will then be ready for client
connections:

./bin/flink run-application \
 --target kubernetes-application \
 -Dkubernetes.cluster-id=<kubernetes cluster name> \
 -Dkubernetes.container.image=<custom docker image name> \
 local:///opt/flink/usrlib/my-flink-job.jar

Session Mode changes resource management by creating a single Flink cluster that
can accept any number of applications on an ad hoc basis. Instead of having multi‐
ple independent clusters running and consuming resources, you may find it more
efficient to have a single cluster that can grow and shrink when new applications are

216 | Chapter 8: Streaming Data on Kubernetes

submitted. The downside for operators is that you now have a single cluster that will
take several applications with it if it fails. Kubernetes will restart the downed Pods,
but you will have a recovery time to manage as resources are reallocated. To start in
Session Mode, use the kubernetes-session shell file and give it the name of your
running Kubernetes cluster. The default is for the command to execute and detach
from the cluster. To reattach or remain in an interactive mode with the running
cluster, use the execution.attached=true switch:

./bin/kubernetes-session.sh \
 -Dkubernetes.cluster-id=<kubernetes cluster name> \
 -Dexecution.attached=true

This was a quick fly-by of a massive topic, but hopefully, it inspires you to look
further. One resource we recommend is Stream Processing with Apache Flink by
Fabian Hueske and Vasiliki Kalavri (O’Reilly). Adding Flink to your application
isn’t just about choosing a platform to perform stream processing. In cloud native
applications, we should be thinking holistically about the entire application stack we
are attempting to deploy in Kubernetes. Flink uses containers, as encapsulation lends
itself to working with other development workflows.

Summary
In this chapter, we have branched out from persistence-oriented data infrastructure
into the world of streaming. We defined what streaming is, how to navigate all the
terminology, and how it fits into Kubernetes. From there, we took a deeper look into
Apache Pulsar and learned how to deploy it into your Kubernetes cluster according
to your environment and application needs. As a part of deploying streaming, we
took a side trip into default secure communications with cert-manager to see how it
works and how to create self-managed encrypted communication. Finally, we looked
at Kubernetes deployments of Apache Flink, which is used primarily for high-scale
stream analytics.

As you saw in this chapter with Pulsar and cert-manager, running cloud native
data infrastructure on Kubernetes frequently involves the composition of multiple
components as part of an integrated stack. We’ll discuss more examples of this in the
next chapter and beyond.

Summary | 217

https://oreil.ly/Iocv6

CHAPTER 9

Data Analytics on Kubernetes

Progress in technology is when we have the ability to be more lazy.
—Dr. Laurian Chirica

In the early 2000s, Google captivated the internet with a declared public goal: “to
organize the world’s information and make it universally accessible and useful.” This
was an ambitious goal and accomplishing it would, to paraphrase, take “computer
sciencing” the bits out of it. Given the increasing rate of data creation, Google needed
to invent (and reinvent) ways of managing data volumes no one had ever considered.
An entirely new community, culture, and industry were born around analyzing data
called analytics, tackling what was eventually labeled “big data.” Today, analytics is
a full-fledged member of almost every application stack and not just relegated to a
Google problem. Now it’s everyone’s problem; instead of an art form restricted to a
small club of experts, we all need to know how to make analytics work. Organizations
need reliable and fast ways to deploy applications with analytics so that they can do
more with less.

The laziness Dr. Chirica was talking about in a tongue-in-cheek way in the quote that
opens this chapter describes an ideal future. Instead of having a hundred-person team
working night and day to analyze a petabyte of data, what if you could reduce that to
one person and a few minutes? The cloud native way of running data infrastructure is
a path we should all work toward to achieve that kind of glorious laziness.

We’ve already looked at several aspects of moving stateful workloads onto Kuber‐
netes, including storage, databases, and streaming. In this chapter, it’s time to look at
analytics to complete the picture. As a bit of a preview, Figure 9-1 shows how data
analytics fits as the final part of our roadmap of managing the complete data stack
using Kubernetes.

219

Figure 9-1. The cloud native virtual datacenter

In this architecture, there are no more external network requirements bridging to
resources in or out of the Kubernetes cluster, just a single, virtual datacenter that
serves our bespoke needs for cloud native applications. The large blocks represent
the macro components of data infrastructure we discussed in Chapter 1, with the
addition of user application code, deployed in microservices.

Introduction to Analytics
Analytic workloads and the accompanying infrastructure operations are much dif‐
ferent from other workloads. Analytics isn’t just another containerized system to
orchestrate. The typical stateful applications like databases we examined in previous
chapters have many similar characteristics but tend to stay static or predictably
slow-growing once deployed.

However, one aspect of analytic workloads strikes fear in many administrators: vol‐
ume. While persistent data stores like databases can consume gigabytes to terabytes
of storage, analytic volumes can easily soar into petabytes, creating an entirely new
class of problems to solve. They don’t call it “big data” for nothing.

220 | Chapter 9: Data Analytics on Kubernetes

The Oxford English Dictionary defines analytics as “the systematic computational
analysis of data or statistics.” Wikipedia adds, “It is used for the discovery, interpreta‐
tion, and communication of meaningful patterns in data.” Combine those definitions
with large volumes of data and what sort of outcome should we expect for cloud
native applications? Let’s break down the different types of analytics workflows and
methodologies:

Batch analytics
In computer science, a batch is a series of instructions applied to data with
little or no user interaction. The idea of running batch Jobs is as old as general-
purpose computing. In distributed systems such as Apache Hadoop or Apache
Spark, each individual Job consists of a program that can operate on smaller bits
of data in parallel and in stages or pipelines. The smaller results are combined
into a single, final result at the end of a Job. An example of this is MapReduce,
discussed later in this chapter. In most cases, statistical analysis such as count,
average, and percentile measurement is done. Batch analytics is the focus of this
chapter.

Stream analytics
As discussed in Chapter 8, stream analytics is about what is happening, whereas
batch analytics is about what happened. Many of the same APIs and developer
methodologies are used in both stream analytics and batch analytics. This can be
confusing and lead people to believe that they are the same thing when, in fact,
they have very different use cases and implementations. A good example is fraud
detection. The time frames for detecting and stopping fraud can be measured in
milliseconds to seconds, which fits the stream analytics use case. Batch analytics
would be used to find fraud patterns over larger time periods.

Artificial intelligence/machine learning (AI/ML)
While AI and ML can be considered a subset of batch analytics, they are such
specialized fields that they deserve a special callout. AI and ML are often men‐
tioned together; however, they have two different output goals. AI attempts to
emulate human cognition in decision making. ML uses algorithms to derive
meaning from pools of data, sometimes in ways that aren’t readily obvious. Both
approaches require the application of computing resources across volumes of
data. This topic is discussed in greater detail in Chapter 10.

Deploying Analytic Workloads in Kubernetes
The original focus of Kubernetes was on scaling and orchestrating stateless applica‐
tions. As you’re learning in this book, Kubernetes is evolving to support stateful appli‐
cations. The promise of operational efficiency by moving more and more workloads
into virtual datacenters has been highly motivating. The world of analytics can take
advantage of the progress made in reducing the operational burden for stateless and

Deploying Analytic Workloads in Kubernetes | 221

https://oreil.ly/Hc1Pp

stateful workloads. However, Kubernetes has some unique challenges in managing
analytic workloads; many are still a work in progress. What features of Kubernetes
are required to complete the data picture and put analytic workloads on par with
other parts of the stack like microservices and databases? Here are a few of the key
considerations we’ll examine in this chapter:

Orderly execution
An essential aspect of analytic workloads is the order of operations required to
analyze large volumes of data. This involves far more than just making sure Pods
are started with the proper storage and networking resources. It also includes
a mapping of the application with the orderly execution run in each Pod. The
Kubernetes component primarily responsible for this task is kube-scheduler
(see Chapter 5), but the controllers for Jobs and CronJobs are involved as well.
This is a particular area of attention for the Kubernetes communities focusing on
analytics, which we will further cover in the chapter.

Storage management
Analytic workloads use ephemeral and persistent storage in different Jobs that
process data. The real trouble occurs when it comes to identifying and selecting
the right storage per Job. Many analytic workloads require ephemeral storage
for short periods and more-efficient (cheaper) persistent storage for long terms.
As you learned in Chapter 2, Kubernetes storage has greatly increased matur‐
ity. Analytics projects that run on Kubernetes need to take advantage of the
work already done with stateful workloads and continue to partner with the
Kubernetes community for future enhancements in areas like StorageClasses and
different access patterns.

Efficient use of resources
There is an old saying that “everything counts in large amounts,” and nothing
makes that more evident than analytics. A Job may require 1,000 Pods for 10
minutes, but what if it needs 10,000? That’s a challenging problem for the Kuber‐
netes control plane. Another Job might require terabytes of swap disk space that
is needed only for the duration of a Job. In a cloud native world, Jobs should be
able to quickly allocate the resources they need and release the resources when
finished. Making these operations as efficient as possible saves time and, more
importantly, money. The fast and bursty nature of analytics has created some
challenges for the Kubernetes API server and scheduler to keep up with all the
Jobs that need to be run. Several of those challenges are already being addressed,
as discussed later in the chapter, and some are still a work in progress.

Those are the challenges, but none of them are showstoppers that will get in the way
of our dream of a complete cloud native stack deployed as a single virtual datacenter
in Kubernetes.

222 | Chapter 9: Data Analytics on Kubernetes

Analytics on Kubernetes Is the Next Frontier
With Holden Karau, Open Source Engineer, Apache Spark PMC

Running analytic workloads has been the boss-level challenge for infrastructure engi‐
neers from day one. There is the challenge of massive volumes of needed resources,
which in many cases are the most significant part of your infrastructure. Then,
coordination is required to use all those resources efficiently, and this is where frame‐
works like Spark come into play. Projects like YARN from Hadoop and then Mesos
were developed to help with the container management game. Today, infrastructure
engineers everywhere are very happy with migrating the best aspects of those systems
to Kubernetes.

Let’s consider a few examples. Running multiple Spark tenants in Kubernetes provides
better isolation between your workloads, which is really important if you don’t trust
each workload to the same degree. Historically, the support for Python dependencies
inside Spark Jobs has been poor, but deploying on Kubernetes makes it possible to
use leading-edge Python libraries for ML and GPU usage. SREs can spend more
time optimizing resources rather than chasing down obscure errors typical with large,
distributed systems.

Ultimately, we are still in the early days of learning how to run our analytic workloads
in Kubernetes most effectively. The difficulty curve starts getting much steeper as
data volumes increase. Once you start going over the tens or hundreds of terabytes,
you will find yourself on the leading edge of Spark operations in Kubernetes. This is
probably not a big surprise, because that tends to be how infrastructure engineering
works. The upper-limit scale problems with Kubernetes are rooted in the early use
cases it was designed for. The dynamic and elastic nature of Kubernetes works well
for the use cases for which it was first designed, but it gets overwhelmed at the levels
required to run Spark applications. This is not impossible to solve, and the Spark and
Kubernetes communities are working to improve a few critical areas.

Kubernetes SREs love the idea of elastic workloads, but in Spark, that’s been much
more painful than it needs to be. Regular execution of a Spark Job can cause a rapid
increase in Pods while the Job is processing, and then those resources are released
when the Job is complete. Scaling up is, unfortunately, much easier than scaling
down. Spark can now make use of externalized resource allocation that opens the
possibility for better solutions. Open source projects such as Volcano and Apache
YuniKorn are already working on resource allocation solutions inside Kubernetes,
which the execution allocator and shuffle service can leverage to align more closely
to the way Kubernetes works. Taken together, these efforts provide a significant path
forward for more efficient resource usage in a dynamic Spark environment.

Resource-intensive applications like Spark can benefit from having more insight from
the underlying systems to balance Jobs as they are run. Today, Kubernetes and Spark
do not share as much information as they need for the best outcomes, and you

Deploying Analytic Workloads in Kubernetes | 223

should adjust your expectations accordingly. A specific example is the way Kuber‐
netes approaches storage quota enforcement, which can work against Spark in some
cases. Ephemeral storage is a key part of Spark execution, but Kubernetes provides
no system-level APIs that Spark could use to check the utilization against the storage
quota, which can cause Job failures. Previous applications that have been deployed on
Kubernetes haven’t needed this level of insight. Spark creates a compelling case for
significant changes to expose additional system-level APIs in Kubernetes, which will
make it possible to build much more reliable analytic workloads.

If you are interested in solving these problems, these solutions will happen in open
source projects. You can get involved today and help us move forward by partici‐
pating in the larger community. Apache Spark has room for improvement and so
does Kubernetes, but the future direction is clear. Kubernetes is where cloud native
analytics will happen, and Spark will continue to evolve. There will be a lot of
interesting work in this area for the next several years at least, and it’s a pretty exciting
community to be a part of.

Engineers can be their own worst enemies. Often when we go to solve one problem,
it creates a few more that need to be solved. We can count this as progress, however,
when it comes to managing data. Every step up we take, despite the challenges, allows
for new solutions that were never available before. It’s a staggering thought—today,
a small number of people can perform analytics tasks that massive teams would not
have been able to accomplish just a few years ago. See the quote about laziness at the
beginning of the chapter. There is still work to be done, and next we will look at the
tools available for analyzing data in Kubernetes.

Introduction to Apache Spark
Google changed the world of data analytics with the MapReduce algorithm simply by
describing it to the world in an academic paper. Not long after the MapReduce paper
got engineers talking, an open source implementation was created: the now-famous
Apache Hadoop. A massive ecosystem was built up around Hadoop with tooling and
complementary projects such as Hadoop Distributed File System (HDFS).

Growing pains from this fast-moving project opened the door for the next generation
of tools that built on the lessons learned with Hadoop. One project that grew in
popularity as an alternative to Hadoop was Apache Spark. Spark addressed reliability
and processing efficiency problems by introducing the Resilient Distributed Dataset
(RDD) API and Directed Acyclic Graph (DAG).

The RDD was a significant improvement over the forced linear processing patterns of
MapReduce, which involved a lot of reading from disk, processing, and then writing
back to disk only to be redone over and over. This put the burden on developers to
reason through how data was processed. RDDs shifted the responsibility away from

224 | Chapter 9: Data Analytics on Kubernetes

https://spark.apache.org/community.html
https://oreil.ly/mryO0
https://oreil.ly/BlT4i

developers as an API that created a unified view of all data while abstracting the
actual processing details. Those details were created in a workflow to perform each
task expressed in a DAG. The DAG is nothing more than an optimized path that
describes data and operations to be completed in an orderly fashion until the final
result is produced. RDDs were eventually replaced with the Dataset and DataFrame
APIs, further enhancing developer productivity over large volumes of data.

Spark’s operational complexity is greatly reduced compared to Hadoop, which notori‐
ously tipped the scale with the infrastructure required even for basic Jobs. Spark is an
excellent example of one of the benefits of being a next-generation implementation
with great hindsight. Much effort was put into simplifying Spark’s architecture, lever‐
aging distributed systems concepts. The result is the three familiar components you
should be familiar with in a Spark cluster, shown in Figure 9-2.

Figure 9-2. Components of a Spark cluster

Introduction to Apache Spark | 225

Let’s review the responsibilities of each of these components:

Cluster Manager
The Cluster Manager is the central hub for activity in the Spark cluster where
new Jobs are submitted for processing. The Cluster Manager also acquires the
resources needed to complete the task submitted. Different versions of the Clus‐
ter Manager are primarily based on how resources are managed (standalone,
YARN, Mesos, and Kubernetes). The Cluster Manager is critical for deploying
your Spark application using Kubernetes.

Worker Node
When Spark Jobs run, they are broken into manageable pieces by the Cluster
Manager and handed to the Worker Nodes to perform the processing. They serve
as the local manager for hardware resources as a single point of contact. Worker
Nodes invoke and manage Spark Executors.

Spark Executor
Each application sent to a Worker Node will get its own Spark Executor. Each
Executor is a standalone JVM process that operates independently and commu‐
nicates back with the Worker Node. The tasks for the application are broken into
threads that consume the compute resources allocated.

These are the traditional components of Spark as designed early in the project. We’ll
see that the need to deploy a cloud native version of Spark forced some architectural
evolution. The fundamentals are the same, but the execution framework has adapted
to take advantage of what Kubernetes provides and eliminate duplication in orches‐
tration overhead. In the next section, we’ll look at those changes and how to work
with Spark in Kubernetes.

Deploying Apache Spark in Kubernetes
As of Apache Spark version 2.3, Kubernetes is one of the supported modes in the
Cluster Manager. It would be easy to understate what that has meant for Spark
as a cloud native analytics tool. Starting with Spark 3.1, Kubernetes mode is consid‐
ered production-ready, continually adding steady improvements. When the Spark
project looked at what it takes to run a clustered analytics system inside a cluster
orchestration platform, a lot of overlaps became obvious. Kubernetes already had the
mechanisms in place for the lifecycle management of containers and the dynamic
provisioning and deprovisioning of compute elements, so Spark lets Kubernetes
take care of this work. The redundant parts were removed, and Spark is closer to
the way Kubernetes works as a result. The spark-submit command-line tool was
extended to interface with Kubernetes clusters using the Kubernetes API, maintaining
a familiar toolchain for developers and data engineers. These unique aspects of a
Spark deployment in Kubernetes are shown in Figure 9-3.

226 | Chapter 9: Data Analytics on Kubernetes

Figure 9-3. Spark on Kubernetes

Let’s highlight a few of the differences:

Spark Driver
The dedicated Cluster Manager of a standalone Spark cluster is replaced with
native Kubernetes cluster management and the Spark Driver for Spark-specific
management. The Spark Driver Pod is created when the Kubernetes API server
receives a Job from the spark-submit tool. It invokes the Spark Executor Pods to
satisfy the Job requirements. It is also responsible for cleaning up Executor Pods
after the Job, making it a crucial part of elastic workloads.

Spark Executor
Like a standalone Spark cluster, Executors are where the work gets done and
where the most compute resources are consumed. Invoked from the Spark
Driver, they take Job instructions passed by spark-submit with details such
as CPU and memory limits, storage information, and security credentials. The
containers used in Executor Pods are pre-created by the user.

Custom Executor container
Before a Job is sent for processing using spark-submit, users must build a
custom container image tailored to meet the application requirements. The Spark
distribution download contains a Dockerfile that can be customized and used
in conjunction with the docker-image-tool.sh script to build and upload the

Deploying Apache Spark in Kubernetes | 227

container required when submitting a Spark Job in Kubernetes. The custom
container has everything it needs to work within a Kubernetes environment, like
a Spark Executor based on the Spark distribution version required.

The workflow for preparing and running Spark Jobs when using Kubernetes and
defaults can be relatively simple, requiring only a couple of steps. This is especially
true if you are already familiar with and running Spark in production. You will need
a running Kubernetes cluster and a download of Spark in a local filepath along with
your Spark application source code.

Build Your Custom Container
An executor container encapsulates your application and the runtime needed to act as
an executor Pod. The build script takes an argument for the source code repository
and a tag assignment for the output image when pushed to your Docker registry:

./bin/docker-image-tool.sh -r <repo> -t <tag> build

The output will be a Docker image with a JAR file containing your application code.
You will then need to push this image to your Docker registry:

./bin/docker-image-tool.sh -r <repo> -t <tag> push

Docker Image Tags

Be mindful that your tag name is labeled and versioned correctly.
Reusing the same tag name in production could have unintended
consequences, as some of us have learned from experience.

Submit and Run Your Application
Once the Docker image is pushed to the repo, use spark-submit to start the process
of running the Spark application inside Kubernetes. This is the same spark-submit
used for other modes, so many of the same arguments are used. This corresponds to
(1) in Figure 9-3:

./bin/spark-submit \
 --master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
 --deploy-mode cluster \
 --name <application-name> \
 --class <fully-qualified-class-name> \
 --conf spark.executor.instances=<instance-number> \
 --conf spark.kubernetes.container.image=<spark-image> \
 local:///path/to/application.jar

228 | Chapter 9: Data Analytics on Kubernetes

Quite a few things are happening here, but the most important is in the --master
parameter. To indicate this is for Kubernetes, the URL in the argument must start
with k8s:// and point to the API server in the default Kubernetes cluster specified in
your local .kubeconfig file. The <spark-image> is the Docker image you created in (1),
and the application path refers to your application stored inside the image.

Next is (2), where spark-submit interacts with the Kubernetes cluster to schedule the
Spark Driver Pod (3) and (4). The Spark Driver parses the Job parameters and works
with the Kubernetes scheduler to set up Spark Executor Pods (5), (6), and (7) to run
the application code contained in the customer container image. The application will
run to completion, and eventually the Pod used will be terminated and resources
returned to the Kubernetes cluster in a process called garbage collection.

This is just an overview of how Spark natively works with Kubernetes. Please refer
to the official documentation to go into much greater detail. There are many ways to
customize the arguments and parameters to best fit your specific needs.

Security Considerations when Running Spark in Kubernetes

Security is not enabled by default when using Spark in Kubernetes.
The first line of defense is authentication. Production Spark appli‐
cations should use the built-in authentication in Spark to ensure
that the users and processes accessing your application are the ones
you intended.
When creating a container for your application, the Spark docu‐
mentation highly recommends changing the USER directive to an
unprivileged unique identifier (UID) and group identifier (GID)
to mitigate against privilege escalation attacks. This can also be
accomplished with a SecurityContext inside the Pod template file
provided as a parameter to spark-submit.
Storage access should also be restricted with the Spark Driver and
Spark Executor. Specifically, you should limit the paths that can
be accessed by the running application to eliminate any accidental
access in the event of a vulnerability. These can be set inside a Pod‐
SecurityAdmission, which the Spark documentation recommends.

For optimal security of your Spark applications, use the security primitives Kuber‐
netes provides and customize the defaults for your environment. The best security is
the one you don’t have to think about. If you are an SRE, this is one of the best things
you can do for your developers and data engineers. Default secure!

Deploying Apache Spark in Kubernetes | 229

https://oreil.ly/upJeL
https://oreil.ly/xQcom

Kubernetes Operator for Apache Spark
If Spark can run in Kubernetes via spark-submit, why do we need an operator?
As you learned in previous chapters, Kubernetes operators give you more flexibility
in managing applications and a more cloud native experience overall. Using spark-
submit to run your Spark applications requires your production systems to be set
up with a local installation of Spark, including all dependencies. The Spark on Kuber‐
netes Operator allows SREs and developers to manage park applications declaratively
using Kubernetes tools such as Helm and kubectl. It also allows better observability
on running Jobs and exporting metrics to external systems like Prometheus. Finally,
using the operator provides an experience much closer to running other applications
in Kubernetes.

The first step is to install the operator into your Kubernetes cluster using Helm:

helm repo add spark-operator \
 https://googlecloudplatform.github.io/spark-on-k8s-operator

helm install my-release spark-operator/spark-operator \
 --namespace spark-operator --create-namespace

Once completed, you will have a SparkApplication controller running and looking for
SparkApplication objects. This is the first big departure from spark-submit. Instead
of a long list of command-line arguments, you use the SparkApplication CRD to
define the Spark Job in a YAML file. Let’s look at a config file from the Spark on
Kubernetes Operator documentation:

apiVersion: "sparkoperator.k8s.io/v1beta2"
kind: SparkApplication
metadata:
 name: spark-pi
 namespace: default
spec:
 type: Scala
 mode: cluster
 image: "gcr.io/spark-operator/spark:v3.1.1"
 imagePullPolicy: Always
 mainClass: org.apache.spark.examples.SparkPi
 mainApplicationFile:
 "local:///opt/spark/examples/jars/spark-examples_2.12-3.1.1.jar"
 sparkVersion: "3.1.1"
 restartPolicy:
 type: Never
 volumes:
 - name: "test-volume"
 hostPath:
 path: "/tmp"
 type: Directory
 driver:

230 | Chapter 9: Data Analytics on Kubernetes

https://oreil.ly/quNfG
https://oreil.ly/quNfG

 cores: 1
 coreLimit: "1200m"
 memory: "512m"
 labels:
 version: 3.1.1
 serviceAccount: spark
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"
 executor:
 cores: 1
 instances: 1
 memory: "512m"
 labels:
 version: 3.1.1
 volumeMounts:
 - name: "test-volume"
 mountPath: "/tmp"

The spec: section is similar to the parameters you passed in spark-submit with
details about your application. The most important is the location of the container
image. This example uses a default Spark container with the spark-examples JAR file
preinstalled. You will need to use docker-image-tool.sh to build the image for your
application as described in “Build Your Custom Container” on page 228, and modify
the mainClass and mainApplicationFile as appropriate for your application.

Two other notable fields under spec are driver and executor. These provide the
specifications for the Spark Driver Pods and Spark Executor Pods that the Spark
Operator will deploy. For driver, only one core is required, but CPU and memory
allocations need to be enough to maintain the number of executors you require. The
number is set in the executor section under instances.

Minding Your Resources

For resource management, the requests you make under driver
and spec need to be carefully considered for resource manage‐
ment. The number of instances plus their allocated CPU and mem‐
ory could use up resources quickly. Jobs can hang indefinitely while
waiting for resources to free up, which may never happen.

Now that your configuration YAML is ready, it’s time to put it into action. For a
walk-through, refer to Figure 9-4.

Kubernetes Operator for Apache Spark | 231

Figure 9-4. Spark on Kubernetes Operator

First, use kubectl apply -f <filename> (1) to apply the SparkApplication into your
running Kubernetes cluster (2). The Spark Operator listens for new applications (3),
and when a new config object is applied, the submission runner controller begins
the tasks of building out the required Pods. From here the actions taken in the Kuber‐
netes cluster are the same as if you used spark-submit, with all of the parameters
being supplied in this case via the SparkApplication YAML. The submission runner
starts the Spark Driver Pod (4) which in turn directs the Spark Executor Pods (5),
which runs the application code to completion. The Pod monitor included in the
Spark Operator exports Spark metrics to observability tools such as Prometheus.

The Spark Operator fills in the gaps between the way spark-submit works and the
way SREs and developers typically deploy applications into Kubernetes. This was
a long answer to the question posed at the beginning of this section. We need an
operator to make using Spark more cloud native and thus more manageable in the
long run. The cloud native way of doing things includes taking a declarative approach
to managing resources and making those resources observable.

232 | Chapter 9: Data Analytics on Kubernetes

Alternative Schedulers for Kubernetes
As you learned in Chapter 5, the Kubernetes scheduler has a basic but essential job:
take requests for resources and assign the compute, network, and storage to satisfy
the requirements. Let’s look at the default approach for this action, as shown in
Figure 9-5.

Figure 9-5. Typical Kubernetes scheduling

A typical scheduling effort begins when you create a deployment.yaml file describing
the resources required (1), including which Pod resources are needed and how
many. When the YAML file is submitted (2) to the Kubernetes cluster API server
using kubectl apply, the Pod resources are created with the supplied parameters
and are ready for assignment to a node. Nodes have the needed pool of resources,
and it’s the job of kube-scheduler to be the matchmaker between nodes and Pods.
The scheduler performs state matching whenever a new Pod resource is created (3),
and checks whether the Pod has an assigned node. If not, the scheduler makes the
calculations needed to find an available node. It examines the requirements for the
Pod, scores the available nodes using an internal set of rules, and selects a node to run
the Pod (4). This is where the real work of container orchestration in Kubernetes gets
done.

However, we have a problem with analytic workloads: the default Kubernetes schedu‐
ler was not designed for batch workloads. The design is just too basic to work the
way that’s needed for analytics. As mentioned in “Analytics on Kubernetes Is the Next

Alternative Schedulers for Kubernetes | 233

Frontier” on page 223, Kubernetes was built for the needs of stateless workloads.
These are long-running processes that may expand or contract over time but tend to
remain relatively static. Analytic applications such as Spark are different, requiring
the scheduling of potentially thousands of short-lived jobs.

Thankfully, the developers of Kubernetes anticipated expanded requirements for
future scheduling needs and made it possible for users to specify their scheduler in a
configuration, bypassing the default scheduling approach.

The strong desire to manage the entire application stack with a common control
plane has been an innovation driver. As demonstrated in “Deploying Apache Spark
in Kubernetes” on page 226, Spark has been moving closer to Kubernetes. In this sec‐
tion, we’ll look at how some teams have been bringing Kubernetes closer to Spark by
building more appropriate schedulers. Two open source projects are leading the way
in this effort: Volcano and Apache YuniKorn. These schedulers share similar guiding
principles that make them more appropriate for batch workloads by providing the
following alternative features:

Multitenant resource management
The default Kubernetes scheduler allocates Pods as requested until no more avail‐
able resources match Pod requirements. Both YuniKorn and Volcano provide
a wide variety of resourcing modes to match your application needs better, espe‐
cially in multitenant environments. Fairness in resource management prevents
one analytic Job from starving out other Jobs for required resources. As these
Jobs are scheduled, the entire resource pool is considered to balance utilization
based on priority and throughput.

Gang scheduling adds another layer of intelligence. If a submitted Job needs a
certain amount of resources, it doesn’t make sense to start the Job if every Pod
can’t be started. The default scheduler will start Pods until the cluster runs out of
resources, potentially stranding Jobs as they wait for more Pods to come online.
Gang scheduling implements an all-or-nothing approach, as Jobs will start only
when all resources needed are available for the complete Job.

Job queue management
Smarter queue management can also lead to better resource management. If one
Job needs few resources and can be run while larger Jobs are being run, the
scheduler can fit the Job in and therefore increase the Kubernetes cluster’s overall
throughput. In some cases, users need control over what Jobs have priority and
which can preempt or pause other running Jobs as they are submitted. Queues
can be reordered or reprioritized after Jobs are submitted. Observability tooling
provides queue insights that help determine total cluster health and resource
usage.

234 | Chapter 9: Data Analytics on Kubernetes

If you are considering a production deployment of analytic workloads, you should
avoid using the default scheduler, kube-scheduler. It wasn’t designed for your needs
in this case. Starting with a better scheduler lets you future-proof your Kubernetes
experience. Let’s examine some highlights of each scheduler.

Apache YuniKorn
The YuniKorn project was built by engineers from Cloudera out of the operational
frustration of working with analytic workloads in Spark. In the spirit of using open
source to solve problems as a community, YuniKorn was donated to the Apache
Software Foundation and accepted as an incubating project in 2020. The name comes
directly from the two systems it supports, YARN and Kubernetes. (Y unified K. Yuni‐
Korn. Get it?) It addresses the specific resource management and user control needs
of analytic workloads from a Spark cluster administration point of view. YuniKorn
also added support for TensorFlow and Flink jobs with the same level of resource
control. No doubt, this support was born of the same operation frustrations found in
Spark.

YuniKorn is installed in Kubernetes using Helm. The goal of YuniKorn is to trans‐
form your Kubernetes cluster into a place that is friendly to the resource require‐
ments of batch Jobs. A key part of that transformation is replacing the default
kube-scheduler. To demonstrate how, let’s use Figure 9-6 to walk through the com‐
ponents.

YuniKorn is meant to be a drop-in scheduler replacement with minimal changes to
your existing Spark workflow, so we will start there. When new resource requests
(1) are sent to the Kubernetes API server via spark-submit (2), the default kube-
scheduler (3) is typically used to match Pods and nodes. When YuniKorn is
deployed in your cluster, an admissions-controller Pod is created. The function
of the admissions-controller is to listen for new resource requests (4) and make
a small change, adding schedulerName: yunikorn to the resource request. If you
need more fine-grained control, you can disable the admissions-controller and
enable YuniKorn on a per Job basis by manually adding the following line to the
SparkApplication YAML:

spec:
schedulerName: yunikorn

Alternative Schedulers for Kubernetes | 235

https://yunikorn.apache.org/docs

Figure 9-6. YuniKorn architecture

All scheduling needs will now be handled by the YuniKorn Scheduler (5). YuniKorn
is built to run with multiple orchestration engines and provides an API translation
layer called Kubernetes shim to manage communication between Kubernetes and
the YuniKorn core (6). yunikorn-core extends the basic filter and score algorithm
available in the default kube-scheduler by adding options appropriate for batch
workloads such as Spark. These options range from simple resource-based queues to
more advanced hierarchical queue management that allows for queues and resource
pools to map to organizational structures. Hierarchical pooling can be helpful for
those with a massive analytics footprint across many parts of a large enterprise and is
critical for multitenant environments when running in a single Kubernetes cluster.

YuniKorn core is configured using the queues.yaml file, which contains all the details
of how YuniKorn will schedule Pods to nodes, including the following:

Partitions
One or more named configuration sections for different application require‐
ments.

Queues
Fine-grained control over resources in a hierarchical arrangement to provide
resource guarantees in a multitenant environment.

236 | Chapter 9: Data Analytics on Kubernetes

https://oreil.ly/2Tp19
https://oreil.ly/kxtHf
https://oreil.ly/M5W1A

Node sort policy
How Nodes are selected by available resources. Choices are FairnessPolicy and
BinPackingPolicy.

Placement Rules
Description and filters for Pod placement based on user or group membership.

Limits
Definitions for fine-grained resource limits on partitions or queues.

New Jobs are processed by YuniKorn core by matching details and assigning the right
queue. At this point, the scheduler can make a decision to assign Pods to nodes,
which are then brought online (7).

YuniKorn also ships with an observability web-based tool called scheduler UI that
provides insights into Job and queue status. It can be used to monitor scheduler
health and provide better insights to troubleshoot any Job issues.

Volcano
Volcano was developed as a general-purpose scheduler for running high performance
computing (HPC) workloads in Kubernetes. Volcano supports a variety of workloads,
including Spark, Flink, PyTorch, TensorFlow, and specialized systems such as Kube‐
Gene for genome sequencing. Engineers built Volcano at Huawei, Tencent, and
Baidu, to name a few of the long list of contributors. Donated to the CNCF, it was
accepted as a Sandbox project in 2020.

Volcano is installed using Helm and creates CRDs for Jobs and queues, making the
configuration a core part of your Kubernetes cluster as compared with YuniKorn,
which is more of a bypass. This is a reflection of the general-purpose nature of
Volcano. When installed, the Volcano scheduler is available for any process needing
advanced scheduling and queuing. Let’s use Figure 9-7 to walk through how it works.

To use Volcano with your batch Jobs, you will need to explicitly add the scheduler
configuration to your Job YAML file (1). If you are using Volcano for Spark, it is
recommended by the Volcano project to use the Spark Operator for Kubernetes and
add one field to your SparkApplication YAML:

spec:
batchScheduler: "volcano"

Alternative Schedulers for Kubernetes | 237

https://oreil.ly/RUI7q
https://oreil.ly/sED2J
https://oreil.ly/sHvMP
https://oreil.ly/ytYU9
https://volcano.sh/en/docs/spark_on_volcano

Figure 9-7. Volcano architecture

You can then use kubectl apply as you normally would to submit your Job (2).
Without specifying the Volcano scheduler, Kubernetes will match Pods and nodes
with the default kube-scheduler (3).

A Helm installation of Volcano will install the CRDs for Job, queue, and PodGroup
and create a new Pod called Volcano Admission. Volcano Admission (4) attaches to
the API server and validates Volcano-specific CRD entries and Jobs asking for the
Volcano scheduler:

Job
A Volcano-specific Job with extended configuration for HPC.

Queue
A collection of PodGroups to be managed as a first in, first out (FIFO) resource
group. Configuration dictates the behavior of the queue for different situations.

PodGroup
A collection of Pods related to their purpose. Examples would be groups for
Spark and TensorFlow with different properties for each.

When selected as the scheduler for a Job (5), the Volcano scheduler will take the
CRDs and start to work (6). Incoming Jobs marked to use Volcano as the scheduler
are matched with a PodGroup and queue. Based on this assignment, a final node
placement is made for each Pod (7).

238 | Chapter 9: Data Analytics on Kubernetes

https://oreil.ly/CknE0
https://oreil.ly/MW2xq
https://oreil.ly/LzeBj

The cluster-specific configuration for the Volcano scheduler core is stored in a Con‐
figMap named volcano-scheduler-configmap. This config file contains two main
sections: actions and plugins. Actions are an ordered list of each step in the node
selection for each Job: enqueue, allocate, preempt, reclaim, and backfill. Each step is
optional and can be reordered to match the type of work that needs to be performed.

Plug-ins are the algorithms used to match Pods with nodes. Each has a different use
case and purpose and can be combined as an ensemble:

Gang
This plug-in looks for higher-priority tasks in the queue and performs preemp‐
tion and eviction if needed to free up resources for them.

BinPack
This is a classic algorithm for finding the best fit for using every resource
available by mixing different-size resource requests in the most efficient manner.

Conformance
This ignores any task in the Namespace kube-system for eviction decisions.

Dominant Resource Fairness (DRF)
This is an algorithm to address issues of fairness across multiple resource types to
ensure that all Jobs have equal throughput.

Proportion
This is a multitenant algorithm to allocate dedicated portions of cluster allocation
for running Jobs.

Task-topology
This algorithm uses affinity to put network-intensive Jobs physically closer
together for more efficient network use.

NodeOrder
This plug-in takes multiple user-defined dimensions to score every available
node before selection.

Predicate
This looks for certain predicates in nodes for selection (but currently supports
only the GPU sharing predicate).

Priority
This plug-in chooses task priority based on the user-supplied configuration in
priorityClassName, createTime, and id.

Alternative Schedulers for Kubernetes | 239

https://oreil.ly/frTKk

Service level agreement (SLA)
This uses the parameter JobWaitingTime to allow individual Jobs the control
over priority based on when they are needed.

Time-division multiplexing (TDM)
When nodes are used for both Kubernetes and YARN, TDM will schedule Pods
that share resources in this arrangement.

NUMA-aware
This provides scheduling for Pods with an awareness of CPU resource topology.

Outside of the Kubernetes installation, Volcano also ships with a command-line tool
called vcctl. Managing Volcano can be done solely through the use of kubectl.
However, vcctl presents an interface for operators more familiar with Job control
systems.

As you can see from the list of features offered by YuniKorn and Volcano, having
choices is a beautiful thing. Regardless of which project you choose, you’ll have
a better experience running analytic workloads in Kubernetes with one of these
alternate schedulers.

Analytic Engines for Kubernetes
Spark is a powerful tool that solves many use cases in analytics. However, having just
a single choice can be restrictive once that tool no longer works the way you do.
Google developed MapReduce in 2004 to fill a need for data transformation, such
as taking a pool of data and creating a count of the things in it, and this is still a
relevant problem today given the volumes of data we create. Even before MapReduce,
massively parallel processing (MPP) was a popular approach for data analysis. These
“supercomputers” consisted of rows and rows of individual computers presented as a
single processing grid for researchers in fields such as physics and meteorology to run
massive calculations that would take far too long on a single computer.

A similar computing need arises when tackling the ML and AI tasks in analytics:
many processes need to analyze a large volume of data. Libraries such as TensorFlow
require analytic tools beyond data transformation. With Kubernetes, data scientists
and engineers can now create virtual datacenters quickly with commodity compute,
network, and storage to rival some of the supercomputers of the past. This combi‐
nation of technologies brings a completely new and exciting future for developers:
building ML-based and AI-based applications based on a self-service usage model
without having to wait for time on a very expensive supercomputer (yes, this was a
thing).

240 | Chapter 9: Data Analytics on Kubernetes

The Evolution of Analytics for Developers in a Cloud Native World
With Dean Wampler, Product Engineering Director for Accelerated Discovery,
IBM Research

There has been speculation that streaming and batch analytics will somehow con‐
verge into a single, universal approach for every project or product. I believe with
Kubernetes that vision becomes less ideal as developers determine what they need to
be successful, and it’s all about choosing the best tool for the job. In fact, more choices
will likely become available for analyzing data that fit different use cases inside and
outside of Kubernetes. Developers and data engineers will need a variety of tools to
overcome limitations and trade-offs.

Let’s suppose you have bought into the idea that you could do everything with
streams. What does that actually mean in practice and where are the limitations?
Suppose I wanted to know exactly how many of each SKU I sold in every store, seg‐
mented into hourly buckets. The challenge with that calculation is some uncertainty
in knowing when all the data is delivered for each hour bucket. You can’t start the
Job exactly on the hour because data might still be in flight. In the worst case, some
data may be significantly delayed because of network partitions or other outages. Now
it’s up to the developers to build in the sophistication for provisional results, which
might be calculated as quickly as possible, and then integrate corrections when late
data arrives. With more diversity in data tooling, they can better solve the problem.
For this example, maybe they would use Apache Flink for dashboards with some
percentage of accuracy about what’s happening immediately. Data that is captured
later would be used in an overnight Apache Spark Job to do the final accounting and
produce the canonical results per hourly bucket. You could argue this is a much more
reasonable level of sophistication based on using the simplest, correct tool for each
Job, composable using Kubernetes.

At larger data scales, organizations still like using Spark for big analytics tasks. How‐
ever, in a growing trend, data scientists and data engineers are starting to recognize
it’s reasonable to have data in a database, rather than a data lake, as a matter of choos‐
ing the right tool for the job. Some teams will use something like Cassandra because
they don’t want the complexity of keeping track of HDFS and Apache Parquet files,
and they want the benefits of indexing and queries. They accept a performance hit
from scanning tables versus a file. These are teams experienced in making trade-off
decisions for convenience or reliability, and sometimes even for less performance.
Kubernetes can encourage a more extensive choice of alternatives by reducing the
up-front costs of trying new things. It’s still early days for cloud native analytics,
but the leaders in this space make it work by being more agile with underlying data
infrastructure.

A new generation of analytic tools is expanding the choices that can be made. With
all its dominance, Spark is still very dependent on the Java Virtual Machine (JVM),
and that feature is becoming a trade-off consideration. Some data engineering shops

Analytic Engines for Kubernetes | 241

don’t want to deal with the JVM anymore: they just want to run Python, sometimes
with C-based library kernels for high performance. This has created an opportunity
for projects like Ray and Dask to cater directly to teams that want to use Python first.
Developers gravitate to tools that help them go faster with fewer trade-offs. However,
while the JVM might be a liability in some cases, Spark has enormous mindshare
and years of continuous improvement. Keeping with the theme of choice, it’s easy to
see how Kubernetes can help create a place where Spark and Ray could be used in
the same application. Cloud native analytics could eliminate the zero-sum game of
all-in-one tools.

The analytics convergence that people have talked about will likely happen at the
interface level, giving developers a single interface with access to the appropriate
tooling underneath—the right mix of services for a cloud native world. Batch offline
analytics with data warehouses augmented with online databases. Streaming analytics
that provide real-time updates to the same data used for the batch Jobs. All are
provided as services deployed in Kubernetes. The most important factor is the easy
access it provides. Citizen data scientists can use Microsoft Excel to explore data.
Visualization tools can connect to any underlying service with low or no code.
Python is increasingly the language of choice for data engineers and scientists build‐
ing pipelines. Support for SQL across streaming and batch analytics has remained
universally popular, leveraging a data language that has been the standard for deca‐
des. Kubernetes will have to support this by enabling the fine-grained concurrency
within a single process that some data processing systems require while leveraging
Pod boundaries for big chunks of resources. It’s a balance of trade-offs. The winner
will be the developers and data scientists who no longer have to worry about making
bad tool choices, allowing them to spend more time writing code that creates value.

Access via the right APIs and ability via the right infrastructure built on Kubernetes
is a powerful combination that the data science and Python community has been
working to make a reality. Two new projects are already making a mark: Dask and
Ray. As pointed out by Dean, Python is the preferred language for data science. Both
Ray and Dask provide a native Python interface for massively parallel processing both
inside and outside of Kubernetes.

Dask
Dask is a Python-based clustering tool for large-scale processing that abstracts away
the complicated setup steps. It can be used for anything that you can express in
a Python program but has found a real home in data science with the countless
libraries available. scikit-learn, NumPy, TensorFlow, and Pandas are all mature data
science libraries that can be used on a laptop and then scaled to a massive cluster of
computers thanks to Dask.

242 | Chapter 9: Data Analytics on Kubernetes

https://www.dask.org

Dask integrates nicely with Kubernetes to provide the easy user experience that oper‐
ators and developers have come to expect with Python. The Dask storage primitives
Array, DataFrame, and Bag map to many cloud native storage choices. For example,
you could map a DataFrame to a file stored in a PersistentVolume or an object bucket
such as S3. Your storage scale is limited only by the underlying resources and your
budget. As the Python code is working with your data, Dask manages the chunking
across multiple workers seamlessly.

Deployment options include the manual Helm install we are now familiar with from
Chapter 4, as you can see in this example:

helm repo add dask https://helm.dask.org/
helm repo update
helm install my-dask dask/dask

Or as an alternative, you can install a Dask cluster in Kubernetes with a Jupyter
Notebook instance for working inside the cluster:

helm install my-dask dask/daskhub

Once your Dask cluster is running inside Kubernetes, you can connect as a client
and run your Python code across the compute nodes using the HelmCluster object.
Connect using the name you gave your cluster given at the time of installation:

from dask_kubernetes import HelmCluster
from dask.distributed import Client

Connect to the name of the helm installation
cluster = HelmCluster(release_name="my-dask")

specify the number of workers(pods) explicitly
cluster.scale(10)

or dynamically scale based on current workload
cluster.adapt(minimum=1, maximum=100)

Your Python code here

If that wasn’t easy enough, you can completely skip the Helm installation and just
let Dask do that part for you. The KubeCluster object takes an argument specifying
the Pod configuration either using a make_pod_spec method or specifying a YAML
configuration file. It will connect to the default Kubernetes cluster accessible via
kubectl and invoke the cluster creation inside your Kubernetes cluster as a part of
the running Python program:

from dask.distributed import Client
from dask_kubernetes import KubeCluster, make_pod_spec

pod_spec = make_pod_spec(image='daskdev/dask:latest',
 memory_limit='4G', memory_request='4G',
 cpu_limit=1, cpu_request=1)

Analytic Engines for Kubernetes | 243

cluster = KubeCluster(pod_spec)

specify the number of workers(pods) explicitly
cluster.scale(10)

or dynamically scale based on current workload
cluster.adapt(minimum=1, maximum=100)

Connect Dask to the cluster
client = Client(cluster)

Your Python code here

Developer access to Kubernetes clusters for parallel computing couldn’t get much
easier, and this is the appeal new tools like Dask can provide.

Ray
In a significant difference from the arbitrary Python code in Dask, Ray takes a
different approach to Python clustering by operating as a parallel task manager that
includes a distributed computing framework with a large ecosystem of integrations.
For the end user, Ray provides low-level C++ libraries to run distributed code
purpose-built for compute-intensive workloads typical in data science. The base is
Ray Core, which does all the work of distributing workloads using the concept of
a task. When developers write Python code using Ray, each task is expressed as a
remote function, as shown in this example from the Ray documentation:

By adding the `@ray.remote` decorator, a regular Python function
becomes a Ray remote function.
@ray.remote
def my_function():
 return 1

In this basic example, you can see the difference in the approach Ray takes for
distributing work. Developers have to be explicit in what work is distributed with Ray
Core handling the compute management with the Cluster Manager.

A Ray deployment in Kubernetes is designed to leverage compute and network
resource management within dynamic workloads. The Ray Operator includes a cus‐
tom controller and CRD to deploy everything needed to attach code to a Ray cluster.
A Helm chart is provided for easy installation. However, since the chart is unavailable
in a public repository, you must first download the entire Ray distribution to your
local filesystem. An extensive configuration YAML file can be modified, but to get a
simple Ray cluster working, the defaults are fine, as you can see in this example from
the documentation:

cd ray/deploy/charts
helm -n ray install example-cluster --create-namespace ./ray

244 | Chapter 9: Data Analytics on Kubernetes

https://oreil.ly/XY5rC
https://oreil.ly/gCmBs
https://oreil.ly/XjXJo

This results in the creation of two types of Pods being installed. The head node
handles the communication and orchestration of running tasks in the cluster, and
the Worker Node handles where tasks execute their code. With a Ray cluster running
inside a Kubernetes cluster, there are two ways to run a Ray Job: interactively with the
Ray client or as a Job submitted via kubectl.

The Ray client is embedded into a Python program file and initializes the connection
to the Ray cluster. This requires the head service IP to be exposed through either
Ingress or local port forwarding. Along with the remote function code, an initializer
will establish the connection to the externalized Ray cluster host IP and port:

import ray

ray.init("ray://<host>:<port>")

@ray.remote
def my_function():
 return 1

Another option is to run your code inside the Kubernetes cluster and attach it to
an internal service and port. You use kubectl to submit the Job to run and pass a
Job description YAML file that outlines the Python program to use and Pod resource
information. Here is an example Job file from the Ray documentation:

apiVersion: batch/v1
kind: Job
metadata:
 name: ray-test-job
spec:
 template:
 spec:
 restartPolicy: Never
 containers:
 - name: ray
 image: rayproject/ray:latest
 imagePullPolicy: Always
 command: ["/bin/bash", "-c", "--"]
 args:
 - "wget <URL>/job_example.py &&
 python job_example.py"
 resources:
 requests:
 cpu: 100m
 memory: 512Mi

This file can then be submitted to the cluster using kubectl:

kubectl -n ray create -f job-example.yaml

Analytic Engines for Kubernetes | 245

https://oreil.ly/gCmBs

Inside the Python file submitted, we can use the DNS name of the Ray service head
and let Kubernetes ensure that the network path is routed:

ray.init("ray://example-cluster-ray-head:10001")

For both external and internal modes of running Ray programs, the head node uti‐
lizes the Kubernetes scheduler to manage the Worker Node Pod lifecycle to complete
the submitted Job. Ray provides a simple programming API for developers to utilize
large-scale cluster computing without learning Kubernetes administration. SREs can
create and manage Kubernetes clusters that can be easily used by data scientists using
their preferred Python programming language.

Summary
This wraps up the tour of data components in your cloud native application stack.
Adding analytics completes the total data picture by enabling you to find insights in
larger volumes of data that can complement other parts of your application.

Analytics is at the frontier of cloud native data innovation, and for this reason big
data isn’t something you should assume fits into Kubernetes in the same way as other
data infrastructure. Two primary differences are the volumes of data involved and the
bursty nature of the workloads. Further improvements are needed to make Apache
Spark run more effectively on Kubernetes, especially in the areas of Job management
and storage APIs However, the knowledge is available to help you deploy with
confidence today. Projects such as Apache YuniKorn and Volcano are already leading
the way in open source to give Kubernetes a better foundation for analytic workloads.
Emerging analytic engines such as Dask and Ray may be a better choice for your use
case, and they can be used in combination with other tools.

While analytic workloads may not have been in your original plans for deployment
in Kubernetes, they can’t be skipped if your goal is to build the complete picture of a
virtual datacenter, purpose-designed to run your application.

246 | Chapter 9: Data Analytics on Kubernetes

CHAPTER 10

Machine Learning and Other
Emerging Use Cases

In previous chapters, we covered traditional data infrastructure including databases,
streaming platforms, and analytic engines with a focus on Kubernetes. Now it’s time
to start looking beyond, exploring the projects and communities that are beginning
to make cloud native their destination, especially concerning AI and ML.

Any time multiple arrows start pointing in the same direction, it’s worth paying
attention. The directional arrows in data infrastructure all point to an overall macro
trend of convergence on Kubernetes, supported by several interrelated trends:

• Common stacks are emerging for managing compute-intensive AI/ML work‐•
loads, including those that leverage specific hardware such as GPUs.

• Common data formats are helping to promote the efficient movement of data•
across compute, network, and storage resources.

• Object storage is becoming a common persistence layer for data infrastructure.•

In this chapter, we will look at several emerging technologies that embody these
trends, the use cases they enable, and how they contribute to helping you further
manage the precious resources of compute, network, and storage. We have chosen
a few projects that touch on different aspects of ML and using data—this is by no
means an exhaustive survey of every technology in use today. We hear directly from
the engineers working on each project and provide some details on how they fit into
a cloud native data stack. You are highly encouraged to continue your journey into
your interests beyond what is presented here. Follow your curiosity and contribute to
the communities supporting new use cases in Kubernetes.

247

The Cloud Native AI/ML Stack
As discussed in Chapter 9, analytics, AI, and ML on Kubernetes is a topic worthy of
more detailed examination. If you aren’t familiar with this specialty in the world
of data, it’s an exciting domain that enhances our ability to produce real-time,
data-driven decisions at scale. While many of the core algorithms have existed for
decades, the nature of this work has been changing rapidly over the past few years.
Data science as a profession has traditionally been relegated to the back office, where
volumes of historical data were gleaned for insight to find meaning and predict the
future. Data scientists rarely had any direct involvement with end-user applications,
and their work was disconnected from user-facing applications.

This began to change with the emergence of the data engineer role. Data engineers
build the processing engines and pipelines to productionalize data science and break
down silos between disciplines. As is typical for emerging fields in data infrastruc‐
ture, the largest, most vocal organizations set the tempo for data engineering, and
their tools and methods have become the mainstream.

The real-time nature of data in applications can’t be left just to databases and stream‐
ing platforms. Products built by data scientists must be closer to the end user to
maximize their effectiveness in applications. Many organizations have recognized
this as both a problem and an opportunity: how can we make data science another
near-real-time component of application deployments? True to form, when faced
with a challenge, the community has risen to the occasion to build new projects
and create new disciplines. As a result, a new category of data infrastructure on
Kubernetes is emerging alongside the traditional categories of persistence, streaming,
and analytics. This new stack consists of tools that support the real-time serving of
data specific to AI and ML.

AI/ML Definitions
If you are new to the field of AI/ML, it’s easy to become overwhelmed by the
terminology. Before we look at a few cloud native technologies that solve problems in
the AI stack, let’s spend some time understanding the new terms and concepts that
are critical to understanding this specialty. If you are familiar with AI/ML, you can
safely skip to the next section.

First, let’s briefly review some common terms used in AI/ML. These frequently
appear in descriptions of projects and features, and you’ll need to understand them to
select the right tools and apply them effectively:

Algorithm
The basic computational building block of ML is the algorithm. Algorithms are
expressed in code as a set of instructions to analyze data. Common algorithms
include linear regression, decision trees, k-means, and random forest. Data

248 | Chapter 10: Machine Learning and Other Emerging Use Cases

scientists spend their time working with algorithms to gain insights from data.
When the procedures and parameters are right, the final, repeatable form is
output into models.

Model
ML aims to build systems that mimic the way humans learn so that they can
answer questions based on provided data without explicit programming. Exam‐
ple questions include identifying whether two objects are similar, the likelihood
of occurrence of a particular event, or choosing the best option given multiple
candidates. The answering system for these questions is described in a mathe‐
matical model (or simply model for short). A model acts as a function machine:
data that describes a question goes in, and new data that represents an answer
comes out.

Feature
Features are the portions of a more extensive data set relevant to a specific use
case. Features are used both to train models and to provide input to models in
production. For example, if you wanted to predict the weather, you might select
time, location, and temperature from a much larger data set, ignoring other data
such as air quality. Feature selection is the process of determining what data you’ll
use, which can be an iterative process. When you hear the word feature, you can
easily translate that to data.

Training
A model consists of an algorithm plus data (features) that apply that algorithm
to a particular domain. To train a model, training data is passed through the
algorithm to help refine the output to match the expected answer based on the
data presented. This training data contains the same features that will be used
in production, with the key difference that the expected answer is known. For
example, given historical temperatures, do the parameters used in the model
predict what actually happened? Training is the most resource-intensive phase of
ML.

Flow
Flow is a shorthand term for workflow. An ML workflow describes the steps
required to build a working model. The flow generally includes data collection,
preprocessing and cleaning, feature engineering, model training, validation, and
performance testing. These are typically fully automated processes.

Vector
The classic mathematical definition of a vector is a quantity that indicates direc‐
tion and magnitude. ML models are mathematical formulas that use numerical
data. Since not all source data is represented as numbers, normalizing input
data into vector representations is the key to using general-purpose algorithms

The Cloud Native AI/ML Stack | 249

in ML. Images and text are examples of data that can be vector encoded in the
preprocessing step of the flow.

Prediction
Prediction is the step of using the created model to produce a likely answer based
on input data. For example, we might ask the expected temperature for a given
location, date, and time by using a weather model. The question being answered
takes the form “What will happen?”

Inference
Inference models look for reasons by reversing the relationship of input and out‐
put data. Given an answer, what features contributed to arriving at this answer?
Here’s another weather example: based on rainfall, what are the most associated
temperatures and barometric pressures? The question being answered is “How
did this happen?”

Drift
Models are trained with snapshots of data from a point in time. Drift is a
condition that occurs as the model loses accuracy due to conditions that have
changed over time or are no longer relevant based on the original training data.
When drift happens in a model, the solution is to refine the model with updated
training data.

Bias
Models are only as good as the algorithms used and how those algorithms are
trained. Bias can be introduced at several points: in the algorithm itself, sample
data that contains user prejudice or faulty measurement, or exclusion of data.
In any case, the goal of ML is to be as accurate as possible, and bias is an
accuracy measurement. Detecting bias in data is a complex problem and is easier
to address early through good data governance and process rigor.

These are some of the key concepts that will help you understand the rest of this
section. For a more complete introduction, consider Introduction to Machine Learning
with Python (O’Reilly) by Andreas C. Müller and Sarah Guido, or one of the many
quality online courses available from your favorite learning platform.

Defining an AI/ML Stack
Given these definitions, we can describe the elements of a cloud native AI stack and
the purposes such a stack can serve. Emerging disciplines and communities have sim‐
ilar implementations with minor variations as various teams innovate to solve their
own specific needs. We can identify some common patterns by looking at organi‐
zations that use AI/ML in production at scale and the trends around Kubernetes
adoption. Figure 10-1 shows some of the typical elements found in architectures
currently in production. Without being prescriptive, we’ll use this as an example of

250 | Chapter 10: Machine Learning and Other Emerging Use Cases

https://oreil.ly/6ii4d
https://oreil.ly/6ii4d

the types of tools in the stack and how they might fit together to serve the real-time
components of AI/ML.

Figure 10-1. Common elements of a cloud native AI/ML stack

The goal of a cloud native AI/ML stack should be to get the insights produced
by AI/ML as close to your users as possible, which means shortening the distance
between backend analytic processes and using their output in frontend production
systems. Data exploration happens using algorithms provided in libraries such as
scikit-learn, PyTorch, TensorFlow, and XGBoost using data stored in databases or
static files. Python is the most commonly used language with ML libraries. The
systems we discussed in Chapter 9, including Apache Spark, Dask, and Ray, are used
to scale up the processing required to use Python libraries to build models. Kubeflow
and similar tools allow data engineers to create ML workflows for model generation.
The workflows output a model file to object storage, providing the bridge between
the backend processes and frontend production use.

Models are meant to be used, and this is the role of real-time model serving tools
such as KServe, Seldon, and BentoML. These tools perform predictions on behalf
of applications using existing models from object storage and feature stores such as
Feast. Feature stores perform full lifecycle management of feature data, storing new
feature data in an online database such as Cassandra, training, and serving features to
models.

The Cloud Native AI/ML Stack | 251

https://scikit-learn.org
https://pytorch.org
https://www.tensorflow.org
https://xgboost.readthedocs.io
https://www.kubeflow.org
https://github.com/kserve/kserve
https://www.seldon.io
https://www.bentoml.com
https://feast.dev

Vector similarity search engines are a new but familiar addition to the real-time
serving stack for applications. While traditional search engines such as Apache Solr
provide convenient APIs for text searching, including fuzzy matching, vector similar‐
ity search is a more powerful algorithm, helping to answer the question “What is like
the thing I currently have?” To do this, it uses relationships in the data instead of just
the terms in your search query. Vector similarity supports many formats, including
text, video, audio, and anything else that can be analyzed into a vector. Many open
source tools implement vector similarity search, including Milvus, Weaviate, Qdrant,
Vald, and Vearch.

Let’s examine a few of the tools that support frontend ML usage by applications
in more detail and learn how they are deployed in Kubernetes: KServe, Feast, and
Milvus.

Real-Time Model Serving with KServe
The “last mile” problem of real-time access to analytic products in AI/ML is one that
Kubernetes is well poised to solve. Consider the architecture of modern web applica‐
tions: HTTP servers that seem to simply serve a web page often have much more
complexity behind them. The reality is that application logic and data infrastructure
are combined to hide the complexity. Much like the HTTP server that listens for
requests and serves a web page, a model server hides the complexity of loading and
executing models. It focuses on the developer experience after the data science is
done.

KServe is a Kubernetes native model server that makes it easy to provide prediction
capabilities to applications in production environments. Let’s learn more about the
origins and functionality of KServe from one of the project founders.

Operationalizing ML Models with KServe
With Theofilos Papapanagiotou, Data Science Architect at Prosus

Google is well known for its contributions to the ML community with projects such
as TensorFlow. Based on the framework it used to run TensorFlow internally, Google
also created Kubeflow, an open source project to help data scientists and engineers
use TensorFlow in production. Kubeflow contains multiple subprojects for different
aspects of deploying ML workflows. One subproject that addressed the externaliza‐
tion (making available for use by other systems) of models was called Kubeflow
serving (KFServing). Initially, it was built only for TensorFlow, but new contributors
joined in and added support for other models such as PyTorch, scikit-learn, and
XGBoost. In 2021, KFServing became an independent project from KubeFlow and
was renamed KServe.

252 | Chapter 10: Machine Learning and Other Emerging Use Cases

https://solr.apache.org
https://milvus.io
https://weaviate.io
https://qdrant.tech
https://vald.vdaas.org
https://github.com/vearch/vearch

The core function of KServe is to provide an API endpoint for deploying previously
built ML models in Kubernetes. Deploying each model involves multiple steps.
KServe handles the fetching of the model from an object store, loading it into
memory, and determining whether the model needs to use CPU or GPU. When
GPU is required, KServe manages the copying of the model from CPU memory to
GPU memory. This behavior can be specified with just a few lines of YAML, which
eliminates a lot of the toil when working with ML in production environments. For
SREs, there is additional integration with Knative Eventing to manage the scale-out,
and observability features like metrics and logging. These are expected behaviors of
an HTTP API and important aspects of putting ML models in production.

KServe has many contributors, and all are driven by a similar mission: operational‐
izing ML to be used by as many people as possible. Data is significant intellectual
property to your organization, and data scientists are tasked to build models that
make efficient use of that data. The real treasure for an organization is the ability
to take those models and apply them to data to make predictions that can be used
in your products, which in turn creates added value for your customers. KServe
emphasizes using data in real time over pushing it to a data lake where it might be
forgotten. For this reason, KServe does not provide a general-purpose data store;
it’s simply a hosting system for models. It functions as a microservice in your cloud
native application, accepting inference requests containing a list of features. The data
returned is a prediction based on the input, and it has to happen quickly, efficiently,
and securely.

Bloomberg is one of the top contributors to KServe, and its use case is an excellent
example of how KServe adds value. Bloomberg News is a real-time news feed that
has a diminishing time value for its users, so articles it provides must be timely and
relevant. Bloomberg uses a massive collection of natural language processing (NLP)
models to score incoming news articles from a variety of sources. Each article is
labeled, classified, and provided to users through a service it calls the Terminal. This
processing isn’t a back-office problem that can be done later, and the inferencing must
be updated dynamically. Fortunately, KServe allows the models to be updated on the
fly. This sort of problem is common in many mobile applications and SaaS products,
and the ease of integration is key.

Beyond just serving models, KServe also helps manage the lifecycle of ML models.
One feature, called an explainer, provides further information about each prediction.
For example, it can offer insight into why a decision was made to approve or reject a
loan application. KServe does this by providing feature importance and highlighting
features in the model that led to the loan decision outcome, such as income level or
credit history. Knowing more than just a binary yes or no decision helps build trust in
the application. For ML operations (MLOps) you can use feature importance to detect
model drift by integrating KServe with other services to compare results with training
data to see if the production model is diverging. You can even include bias detection
with AI Fairness, which is now a Linux Foundation incubating project. These features
help KServe reduce the effort involved in MLOps.

The Cloud Native AI/ML Stack | 253

https://oreil.ly/IGDcM
https://lfaidata.foundation/projects/ai-fairness-360

ML affects all our lives, from food delivery to entertainment. Serving models dynami‐
cally in a Kubernetes environment is a crucial step toward integrating ML and AI in
more and more applications, and KServe will play a large role in making that happen.

Figure 10-2 shows how KServe is deployed on Kubernetes. The control plane consists
of the KServe controller, which manages custom resources known as InferenceSer‐
vices. Each InferenceService instance contains two microservices, a Transformer
Service and a Predictor Service, each consisting of a Deployment and a Service.
The Knative framework is used for request processing, treating these as serverless
microservices that can scale to zero when they are not being used for maximum
efficiency.

Figure 10-2. Deploying KServe in Kubernetes

The Transformer Service provides the endpoint for prediction requests from client
applications. It also implements a three-stage process of preprocessing, prediction,
and post-processing:

254 | Chapter 10: Machine Learning and Other Emerging Use Cases

Preprocessing
The Transformer Service converts the incoming data into a usable form for the
model. For example, you may have a model that predicts whether a hot dog is in
a picture. The Transformer Service will convert an incoming picture to a vector
before passing it to the inference service. During preprocessing, the Transformer
Service also loads feature data from a feature store such as Feast.

Prediction
The Transformer Service delegates the work of prediction to the Predictor
Service, which is responsible for loading the model from object storage and
executing it using the provided feature data.

Post-processing
The Transformer Service receives the prediction result and performs any needed
post-processing to prepare the response to the client application.

If you are familiar with traditional web serving, you can see the helpful analog that
model serving creates. Instead of serving HTML pages, KServe covers the modern
application needs for serving AI/ML workloads. As a Kuberentes native project, it fits
seamlessly into your cloud native datacenter and application stack.

Full Lifecycle Feature Management with Feast
Lifecycle management is a common theme in any data architecture, encompassing
how data is added, updated, and deleted over time. Feature stores serve a helpful
coordination role by managing the lifecycle of features used by ML models from
discovery to their use in production systems, eliminating the versioning and coordi‐
nation issues that can arise when different teams are involved. How did Feast come to
exist?

Bridging ML Models and Data with Feast
With Willem Pienaar, Principal Engineer, Tecton

The Feast project was born from the experiences of the ML platform team at GoJek.
After building out the core ML tooling, we realized our data scientists were struggling
to get models into production. We needed a different kind of tooling to enable the
data scientists to help themselves.

The same operational rigor we applied to the deployment of traditional data infra‐
structure was also needed for ML infrastructure. These realizations led to the creation
of what we now know as the Feast project. After observing emerging tools from other
teams, especially what the Uber team had been doing with Michaelangelo, the idea of
a feature store became a first-class priority for us.

The Cloud Native AI/ML Stack | 255

To help understand what a feature store does, consider the problem space. GoJek had
hundreds of millions of users using a variety of services including ride-hailing, food
delivery, and digital payments. Each service had an element of ML, requiring many
steps to go from the back-office data science team to production. We used tools like
Flink to help with the large-scale SQL batch transformation and stream processing
required for model creation, and systems like Redis and Cassandra to serve data,
but there were remaining problems to operationalize our ML models. We needed a
framework on top of those data systems unifying offline and online access, and so the
concept of the feature store emerged.

Feature stores serve as a layer to give models a consistent way to access data, effec‐
tively providing a bridge between ML models and data within your organization.
In production ML models there are two stages: the training and the online phases.
Whether the data is coming from a stream, request data, or a data warehouse, your
model can’t have different copies of data in different environments in each stage. Dur‐
ing the training phase, a feature store manages scale requirements for data processing
when computing data for model export, similar to other big data tools like Spark. In
the online phase, the feature store provides low-latency, real-time access to models
and, in some cases, derives features in real time, also known as on-demand features.
Feast ensures the consistency of data for both phases, and it meets both online and
offline requirements. Traditional database systems can provide only a subset of those
features. For example, Cassandra supports many of the online features, but not offline
scalability or specialized features like point-in-time correctness.

Feast began as a place to store computed features, but as we got further into the
problem, we also needed to serve those features in production against our models in a
consistent way, as an integrated part of our Job flow. As the Feast project grew, Google
became a key collaborator, and within a few months, we had the first working parts
of the project. The Kubeflow team at Google suggested we open source the project
to make it available to a larger community. With the support of our management, we
released a minimum viable product very quickly. So fast, in fact, we released Feast
without a lot of things needed to help new users get started, like documentation!

Despite the minimal state, it became clear that Feast met a huge need as a community
quickly formed around the project. Teams having similar issues with ML flows were
coming to the same realization that they needed an assistant or data platform for
operationalizing ML.

In the early days of the project, deploying Feast in Kubernetes included a big stack
of components. Today, Feast has evolved to be more lightweight; many of the extra
components have been stripped away, making it more efficient and easier to manage.
The best approach to building ML platforms on Kubernetes is to make your process‐
ing components as stateless as possible and store state externally. The registry doesn’t
even have to be in Kubernetes since it can just be a file in an object store. Feast is
frequently deployed alongside Redis or Cassandra inside Kubernetes and connected
externally to data warehouses like BigQuery and Redshift. Providing external access

256 | Chapter 10: Machine Learning and Other Emerging Use Cases

to Feast is an important aspect. This is typically done using an Ingress to access the
API server directly. In other cases, KServe is used as an intermediate serving layer to
provide a scalable solution when a popular ML model is used by external services.

The future for Feast is to be more cloud native and fully integrated with Kubernetes.
Quite a few challenges remain to be solved in deploying ML in Kubernetes, with the
biggest being operational maturity. It still takes quite a bit of work for engineers to
install many of the components, and the day two maintenance is more demanding
than it should be. More community involvement will help grow the maturity of ML as
an emerging part of the Kubernetes data stack.

As Willem noted, the deployment of Feast on Kubernetes is at a basic state of matur‐
ity. As no operator or custom resources are defined, you install Feast using a Helm
chart. Figure 10-3 shows a sample installation using the example documented on the
Feast website, which consists of the feature server and other supporting services.

Figure 10-3. Deploying Feast in Kubernetes

Let’s examine these components and how they interact. Data scientists identify fea‐
tures from existing data sources in a process called feature engineering and create
features using an interface exposed by the feature server (as defined in “Bridging ML
Models and Data with Feast” on page 255). The user can either provide feature data
at the time of creating the feature or can connect to various backend services so that

The Cloud Native AI/ML Stack | 257

https://oreil.ly/GYNjR
https://oreil.ly/GYNjR

the data can be updated continuously. Feast can consume data published to Kafka
topics, or through Kubernetes Jobs that pull data from an external source such as
a data warehouse. The feature data is stored in an online database such as Redis or
Cassandra so that it can be easily served to production applications. ZooKeeper is
used to coordinate metadata and service discovery. The Helm chart also supports the
ability to deploy Grafana for visualization of metrics. This may sound familiar to you,
because the reuse of common building blocks like Redis, ZooKeeper, and Grafana is a
pattern we’ve seen used in several other examples in this book.

When model serving tools like KServe are asked to make predictions, they use the
features stored in Feast as a record of truth. Any updated training by data scientists is
done using the same feature store, eliminating the need for multiple sources of data.
The Transformation Service provides an optional capability to generate new features
on demand by performing transformations on existing feature data.

KServe and Feast are often used together to create a complete real-time model
serving stack. Feast performs the dynamic part of feature management, working with
online and offline data storage as new features arrive through streaming and data
warehouses. KServe handles the dynamic provisioning for the model serving by using
the serverless capabilities of Knative. This means that when not in use, KServe can
scale to zero and react when new requests arrive, saving valuable resources in your
Kubernetes-based AI/ML stack by using only what you need.

Vector Similarity Search with Milvus
Now that we’ve looked at tools that enable you to use ML models and features in
production systems, let’s switch gears and look at a different type of AI/ML tool:
vector similarity search (VSS). As discussed in “AI/ML Definitions” on page 248,
a vector is a number object representing direction and magnitude from an origin
in vector space. VSS is an application of vector mathematics in ML. The k-nearest
neighbors (KNN) algorithm is a way to find how “close” two things are next to each
other. This algorithm has many variations, but all rely on expressing data as a vector.
The data to be searched is vectorized using a CPU-intensive KNN-type algorithm;
typically, this is more of a backend process. VSS servers can then index the vector
data for less CPU-intensive searching and provide a query mechanism that allows
end users to provide a vector and find things that are close to it.

Milvus is one of many servers designed around the emerging field of VSS. Let’s learn
how Milvus came to exist and why it’s a great fit for Kubernetes.

258 | Chapter 10: Machine Learning and Other Emerging Use Cases

A New Era of Search for Kubernetes Applications
With Xiaofan Luan, Director of Engineering, Zilliz, and Milvus Maintainer

There is a growing community around the newly emerging field of VSS, most
notably in the use of libraries such as Facebook AI Similarity Search (FAISS) and
Hierarchical Navigable Small World (HNSW). These libraries are used to take the
output of computationally expensive ML algorithms and create end-user applications.
Algorithms like convolutional neural networks (CNN) can take data including images
and generate vectors that are simply a list of numbers. The real value of the analysis
comes from what you do with that list of numbers.

Structured data searching has been a standard feature of traditional relational data‐
base management systems (RDBMSs) in which all the values in columns are indexed
for fast lookup. Projects like Apache Lucene built on this, making text search a new
kind of competency for unstructured data. Users can provide all or part of the text
they are searching for and get back multiple results with varying confidence values.
Lucene is the engine for higher-level systems such as Apache Solr and Elasticsearch.
Combined, they create a data server that is used in almost every kind of application
now.

Milvus was designed to fulfill a similar purpose as Solr and Elasticsearch. However,
instead of working with only text, Milvus exposes a general-purpose VSS capability.
It provides a top-level operational server for users who want more than just a library
and need a system that can handle important details like durability, failure, and recov‐
ery. Milvus is a system that can be deployed and managed in Kubernetes to manage
storage and helper features like computation disaggregation. Most importantly, it
provides the Milvus API interface for application developers to use VSS in their code
to do things that aren’t possible with previous databases.

To give an example of how this works, imagine a library containing photos of meals.
Using an image analysis tool such as you only look once (YOLO), the objects in the
images are separated into main dishes such as a sandwich and various side dishes
like french fries. The next step is to process each object by using ResNet to extract its
dimensions. The output of ResNet is a 256-dimensional vector for each item, which
is then loaded into Milvus and assigned a unique ID. Milvus indexes the different
objects so they can be accessed via its search interface. User-facing applications can
provide a picture of a hamburger and fries and ask for similar meals based on the
indexed images and the similarities.

Let’s compare this example to the experience of using a text search engine like
Elasticsearch. To start, you would need a text description of each meal, which you
would index using Lucene, and then you would be able to search for the words
“french fries.” Similarly to the way Elasticsearch makes searching text easier, Milvus
enables the searching of vectorized video, audio, and even natural language text.

The Cloud Native AI/ML Stack | 259

Milvus 1.0 was deployed as a single node for storing, indexing, and serving data.
This worked for anyone needing a simple package, but it wasn’t cloud native or
Kubernetes friendly. For the 2.0 release, we decided that Milvus needed to change into
a distributed architecture and become more cloud native, separating the compute ele‐
ments from storage. Our goal was to make Milvus scale horizontally by independent
function with an additional benefit of disaster recovery. Four layers are deployed in a
Milvus cluster: the access layer, coordinator service, Worker Node, and storage nodes.
Breaking Milvus into something similar to microservices reduces the reliance on state
to only the storage nodes. The access layer, coordinator service, and Worker Nodes
are stateless, making the system much easier to scale up and down and eliminating
single points of failure. One of the essential features for the Milvus operator in the
2.0 release was the change to object storage and away from StatefulSets. With these
updates, Kubernetes is now the preferred way to deploy Milvus.

Milvus is now a graduated project under the governance of the LF AI & Data
Foundation. The projects in this foundation are all looking toward a cloud native
future for data and the emergence of AI and ML as a core part of every application.
The focus for Milvus post 2.0 is performance. Applications based on AI/ML require
fast responses, and search is a speed-dependent operation. Code improvements are
a more traditional way of gaining performance, but in the AI/ML world, hardware
plays a big part as well. Taking advantage of GPUs or custom field-programmable
gate array (FPGA) applications will again help developers take advantage of AI/ML
performance advances using a simple API. Overall, we want to provide an easy
path for people building cloud native applications to go from the leading edge to
mainstream with a great experience.

As Xiaofan mentions, Milvus supports both standalone and clustered deployments,
using the four layers described. Both models are supported in Kubernetes via Helm,
with the clustered deployment shown in Figure 10-4.

The access layer contains the proxy Service, which uses a Kubernetes LoadBalancer to
route requests from client applications. The services in the coordination layer handle
incoming search and index queries, routing them to the core server components in
the worker layer that handle queries and manage data storage and indexing. The data
nodes manage persistence via files in object storage. The message storage uses Apache
Pulsar or Apache Kafka to store the stream of incoming data that is then passed to
data nodes.

As you can see, Milvus is designed to be Kubernetes native, with a horizontally scala‐
ble architecture that makes it well poised to scale up to massive data sets including
billions or even trillions of vectors.

260 | Chapter 10: Machine Learning and Other Emerging Use Cases

https://oreil.ly/BqwqQ
https://oreil.ly/BqwqQ

Figure 10-4. Deploying Milvus in Kubernetes

Efficient Data Movement with Apache Arrow
Now that we have explored an AI/ML Kubernetes stack that helps you manage
compute resources more efficiently, you might be wondering what can be done
with network resources. The “fallacies of distributed computing” we discussed in
“Embrace Distributed Computing” on page 14 include two important points: the
fallacies of believing that bandwidth is infinite and that transport cost is zero. Even
when compute and storage resources seem much more finite, it’s easy to forget how
easily you can run out of bandwidth. The deeper you get into deploying your data
infrastructure into Kubernetes, the more likely it is you will find out. Early adopters
of Apache Hadoop often shared that as their clusters grew, their network switches
needed to be replaced with the best that could be purchased at the time. Just consider
what it takes to sort 10 terabytes of data. How about 1 petabyte? You get the idea.

Apache Arrow is a project that addresses the problem of bandwidth utilization by pro‐
viding a more efficient format. This actually isn’t an unknown approach in the history
of computer science. IBM introduced Extended Binary Coded Decimal Interchange
Code (EBCDIC) character encoding to create efficiency for the preferred transport of
the time: the punch card. Arrow attacks the problem of efficiency from the ground
up in order to avoid the endless upgrading to add more resources, proving that

Efficient Data Movement with Apache Arrow | 261

https://oreil.ly/MI488
https://oreil.ly/MI488

the solution to a control problem is never “add more power.” Let’s hear from some
experts to learn how this works.

Efficient Data Movement with Apache Arrow
With Josh Patterson, CEO, Voltron Data, and Keith Kraus, VP of Product, Voltron Data

As big data technologies like Spark, Kudu, and Cassandra made it possible to move
larger amounts of data between systems, it became clear that the computational
and performance cost of serializing and deserializing data was getting too high.
Wes McKinney and Jacques Nadeau, along with others, made a bid to address this
problem with a project called Apache Arrow. Arrow provides a standard way to
represent the layout of data so systems can share that data with fewer headaches.

Arrow uses an in-memory columnar format—that is, data arranged in a tabular
format of rows and columns. In traditional relational databases, each record is
represented as a row with multiple columns. Arrow pivots this arrangement: data
is organized in sequentially ordered columns. This provides significant advantages
when searching and processing large amounts of data, especially because of how it
aligns with modern CPU architectures.

Arrow Flight is a subproject to bring the same efficiency we see in processing to
network communications. Highly connected distributed systems consume network
resources quickly, and any efficiency gains quickly make a big difference at high vol‐
umes. Flight is a remote procedure call (RPC) layer that drastically reduces resource
utilization for communications between data services by eliminating serialization
costs. Flight uses gRPC for network efficiency, which enables it to send data in parallel
using multiple channels. Using Arrow in all of your Kubernetes native analytics stack
reduces resource usage and therefore cost.

Arrow doesn’t just provide benefits for network utilization; it also has promise for
more efficient compute processing for AI/ML workloads. Arrow provides a fast
access pattern for data analytics and tabular data that Kubernetes applications can
take advantage of. Arrow was one of the first projects in the data analytics space to
encourage users to think carefully about the usage of memory and processing hard‐
ware, and this timing has coincided nicely with the rise of deep learning. Kubernetes
native analytics workloads powered by Arrow will help keep costs low while allowing
higher processing volumes.

In fact, Kubernetes was a key driver that moved the Arrow project forward. As the
GPU-accelerated stack was being defined around 2018, Kubernetes was emerging as
an industry standard, replacing Hadoop YARN as the leading resource management
tool for big data processing. The Kubernetes community was developing key features
more rapidly, like support for the remote direct memory access (RDMA) protocol
and topology awareness of nodes containing GPUs. Kubernetes also supported faster
SLAs for cluster operations. With modern GPUs offering 50 times faster processing
times, the Job of analyzing dozens of terabytes might take 5 minutes, while schedul‐

262 | Chapter 10: Machine Learning and Other Emerging Use Cases

https://arrow.apache.org

ing and provisioning the machines with YARN to perform that Job could take 10
minutes. The auto-scaling abilities in Kubernetes offered the right reaction time to
match these cyclical workloads. New advanced schedulers such as YuniKorn and
Volcano now make those operations even faster and more efficient.

Finding ways to take advantage of new hardware technology is a critical part of
our battle to keep up with the ever-increasing volumes of data created. The trend
toward using GPUs for big data processing is already increasing, and adopting Arrow
will only make this easier. In fact, the effect on the community has already reached
a tipping point. With the momentum of GPUs adopting the Arrow format, data
tools have started adopting Arrow for compatibility, helping to cement Arrow as a
data interoperability standard. Arrow could be more than just a language-agnostic
connector; it could be a hardware connector. We’ve come to believe that an increasing
number of systems will become Arrow native in the near future.

The data and analytics ecosystem will continue to drive the future of Kubernetes
and Arrow. Frameworks like Dask and Ray use Python as their underlying compute
library, with Arrow used as the format within Pandas DataFrames sent over the wire
between workers. Getting your tabular data efficiently over the wire is a huge benefit,
and Arrow provides an easy-to-implement standard that is completely interchangea‐
ble, open, and widely adopted. It allows future tool developers to focus on the special
thing they are building and less on optimizing interconnect.

The Arrow community has become a center of gravity attracting large and innovative
projects. The data and analytics community has a pattern of rebuilding new infra‐
structure about every 10 years. This time the revolution is defined not by starting
over, but by refining the things that we have, biased toward optimizing the primitives.
Arrow provides a modular building block that can be used, optimized, extended,
and composed with multiple other systems. The groundwork for the next 10 years
of data infrastructure can start on a sound foundation learned from the mistakes
of the past decade. Then we can focus on problems like improving Parquet, using
single instruction, multiple data (SIMD) vectorization, or building storage that could
be compacted tightly and quickly. Arrow can be a big part of these solutions because
it touches so many systems. Even though its focus on the way we represent data is
simple, minor improvements here can have massive ripple effects on our cloud native
future.

Using Arrow-enabled projects enables you to share data efficiently, reducing your
resource usage across compute, network, and storage. Example usage of Arrow with
Spark is shown in Figure 10-5.

Efficient Data Movement with Apache Arrow | 263

Figure 10-5. Moving data with Apache Arrow

Parquet datafiles containing Arrow-formatted data persisted to object storage can
be easily loaded without a deserialization step (1). The data can then be analyzed
by a Spark application (2), including loading directly into a GPU for processing
where available. The same efficiency level is maintained when passing data between
Worker Nodes using Arrow Flight (3). The Arrow record batch is sent without any
intermediate memory copying or serialization, and the receiver can reconstruct the
Arrow record without memory copy or deserialization. The efficient relationship
between the remote processes eliminates two things: processing overhead for sending
data and the efficient Arrow record format that eliminates wasted bandwidth.

At the scale common in Spark applications, the effect on network latency and band‐
width can add up quickly. The network transport savings really keep your data
moving, even when volumes reach into terabytes and petabytes. Research performed
by Tanveer Ahmad at TU Delft showed a 20 to 30 times efficiency gain using Arrow
Flight to move large volumes of data.

Versioned Object Storage with lakeFS
Object storage is becoming the standard for cloud native data persistence. It lowers
the complexity for services but also points to a different way of thinking about data
mutability. Instead of opening a file and providing random access, file storage is
precomputed, written once, and read many times. Instead of updating a datafile, you
write a new one, but how do you distinguish which datafiles are current? For this
reason, object storage presents issues with disk space management. Since there is no
concept of managing an entire filesystem, each file is an object in a virtually infinite
resource.

264 | Chapter 10: Machine Learning and Other Emerging Use Cases

https://oreil.ly/rve9i

Object storage APIs are fairly basic with few frills, but data teams need more than just
the basics for their use cases. lakeFS and Nessie are two projects trying to make object
storage a better fit for emerging workloads on Kubernetes. Let’s examine how lakeFS
extends the functionality of object storage for cloud native applications.

Data Integrity to Let You Sleep at Night
With Adi Polak, VP of Developer Experience, Treeverse

In working as a full-time engineer building big data infrastructure, there were many
times I had to manually change data in object storage in our production environment.
This task became even more challenging when using complex data formats such as
Parquet. On one occasion, I needed to delete some datafiles to resolve a production
issue. Unfortunately, I accidentally deleted the wrong data. That meant 20 hours in
the office with a very grumpy DevOps team trying to recover the data from backup
because, of course, it was customer data. At least in this case, we were aware of the
issue. What’s even more concerning are the silent failures that impact data products
without us even being aware.

These problems occur frequently today because our systems are too fragile. We
are biased toward action, but we’re human and therefore have a tendency to make
mistakes. The result is that bad things happen to good data.

How does lakeFS help with situations like the one I’ve described? The simplest way
to describe lakeFS is that it enables Git-like capabilities for object storage. It allows
engineers to perform familiar actions like branch, commit, merge, and revert. This
creates new options for the way you use data and enhances workflows.

For example, a typical use case for using lakeFS is continuous integration/continuous
deployment (CI/CD) flows. Data engineers frequently need to reproduce some por‐
tion of a data pipeline over different versions of the data, which requires branching.
When running on Kubernetes, multiple containers can potentially run the same
code over different versions of data. Branching data on the object store creates an
isolated environment for experimentation. If there is a mistake in the branch, you can
simply revert. This provides the ability to experiment at low cost without harming the
original data, which builds trust and allows teams to move faster with safety.

Another example is trying out a new application to see how it fits into the bigger data
flow. Git semantics on data can make a massive difference in complicated scenarios
that are typically hard to test. In “Analytics on Kubernetes Is the Next Frontier”
on page 223, Holden Karau addressed the difficulty in testing big data applications.
It’s almost impossible to mimic production flows in development or staging environ‐
ments because of the variety and production data volume. With lakeFS, you can use
branching to test with multiple data versions, duplicating the variety and volume seen
in production and building confidence in what is being built.

Versioned Object Storage with lakeFS | 265

https://lakefs.io
https://projectnessie.org

To integrate with your environment, lakeFS exposes an S3-compatible API endpoint
through a stateless service. However, it doesn’t actually serve as storage. LakeFS forks
data commands from your application. Loading data to lakeFS is a metadata opera‐
tion that creates your main branch in lakeFS by creating pointers to the physical data
in your S3 bucket. Any additional branch is an atomic metadata operation pointing to
the same data as main when created from it. The metadata created by lakeFS is saved
to your S3. As long as the user application is using the lakeFS API endpoint, all Git
functionality is available. If users want to stop using lakeFS at any point, the original
data storage is unaltered and can be used directly by changing the endpoint address
used by your application. To roll up any changes while using lakeFS, an offboarding
script is available to synchronize any changes before taking lakeFS out of the path.
This makes it easy for users to try lakeFS and then adopt or move on without the
need to move existing data. The design of lakeFS enables seamless integrations with
other parts of your data infrastructure such as Apache Iceberg, Apache Hudi, or Delta
Lake, providing the added features of branch, commit, rollback, and merge.

lakeFS addresses the lack of atomicity, consistency, isolation, durability (ACID) trans‐
actions across multiple systems by providing the ability to have versioned object stor‐
age. The consistency level guarantees passthrough from the originating application.
However, when multitable operations are performed on an isolated branch, the merge
function across all tables is atomic, achieving cross-table consistency.

We are at an interesting intersection point for data workloads on Kubernetes. Many
developers who have been working with distributed data workloads for years think
in terms of the Hadoop ecosystem. Now we’re actually bringing in a different type
of developer: the application developer who works with Kubernetes. A potential for
more friction and errors exists since these developers are not always aware of the
infrastructure and the way things have traditionally worked in the big data world.

Kubernetes is now being used to orchestrate the systems that process data and turn
it into products for sale. If the data is not protected, your business is at risk. Organ‐
izations need to be able to audit, save, and deliver data reliably, even if it is at a
lower SLA. lakeFS is a great fit for Kubernetes deployment because it assumes that
the complexity of distributed systems and distributed data will lead to many mistakes
around data. That assumption is met with the assurance that any mistake is easily
fixed and never devastating, leading to a great night of sleep for your DevOps teams.

Using lakeFS in Kubernetes is a great fit because of its stateless design and declarative
deployment. A Helm deployment consists of configuring the lakeFS service, which
then serves as a communication gateway to and from other services.

266 | Chapter 10: Machine Learning and Other Emerging Use Cases

https://oreil.ly/mjGnN
https://oreil.ly/mjGnN
https://oreil.ly/GhZMB

Communications into the server emulate S3 object storage, enabling interaction with
any data store that supports the S3 API. Incoming communication is bound as a
ClusterIP to serve HTTP traffic across one or more stateless lakeFS server Pods
managed by a Deployment.

lakeFS uses PostgreSQL to manage metadata, so users can either provide the endpoint
for a running system, as shown in Figure 10-6, or lakeFS can run an embedded
PostgreSQL server inside the lakeFS Pod for its exclusive use. PostgreSQL is the state
management for the stateless lakeFS servers when deployed as a cluster.

Figure 10-6. Deploying lakeFS in Kubernetes

The most important connection is to the object storage endpoints that will store the
actual data. When users persist data to lakeFS, the actual datafile will pass through to
the backend object storage, and versioning metadata is stored in PostgreSQL.

The additional outbound connection is for providing orchestration with other ML
infrastructure. Webhooks allow for triggers on action that alert downstream systems
when something such as a commit is issued. These triggers serve as a key ingredient
to automated ML workflows and other applications.

Versioned Object Storage with lakeFS | 267

Summary
As you can see, the pipeline of new and exciting ways to work with data in Kuber‐
netes extends well into the future. New projects are addressing the challenges of
advanced data workloads according to the cloud native principles of elasticity, scala‐
bility, and self-healing.

These tools give you the ability to manage the critical resources of compute, network
and storage. You can better manage compute-intensive workloads such as AI/ML
with KServe for the delivery, Feast for model management, and Milvus to opera‐
tionalize new search methods. Network resources are ruled by the simple laws of
volume and speed, and at the volumes of data we can create, every little bit helps.
Apache Arrow reduces this volume by creating a common reference frame across
applications. Unifying around object storage provides further efficiencies, with tools
like lakeFS making object storage easier to consume in ways that are sympathetic to
application data storage needs.

At this point, we’ve examined data infrastructure on Kubernetes from mature areas
like storage all the way out to cutting-edge projects for managing AI/ML artifacts
such as models and features. Now it’s time to take all the knowledge you’ve gained so
far and plan to put it into practice.

268 | Chapter 10: Machine Learning and Other Emerging Use Cases

CHAPTER 11

Migrating Data Workloads to Kubernetes

In the first chapter, we presented a vision for combining all of the infrastructure
needed for your cloud native applications into one place: Kubernetes. Our argument
was simple: if you’re excluding data and its supporting infrastructure from your
Kubernetes deployments, you haven’t fully embraced cloud native principles. We’ve
covered a lot of ground since then, examining how various types of data infrastruc‐
ture work on Kubernetes and demonstrating the art of the possible.

So, where do you go from here? What are the steps to fully realize this vision? At
this point, you may already have some parts of your applications in Kubernetes.
More than likely, you also have several previous generations of infrastructure such as
containers, VMs, or bare-metal servers, whether running in your own datacenters or
in the cloud. In this final chapter, we’ll leverage everything you’ve learned so far to
help you create a plan to fully manage your cloud native data in Kubernetes.

The Vision: Application-Aware Platforms
Throughout the book, we’ve heard a diverse range of voices in the community present
their wisdom about data in Kubernetes and practical advice for this monumental
undertaking. No matter where you are in the process, whether you’re a Kubernetes
beginner or a seasoned multiyear operator, we all have things to learn from their
expertise. Now it’s time to zoom out and consider how the move to Kubernetes
intersects with other trends in the software industry. Craig McLuckie was part of
the team that created Kubernetes at Google and eventually shepherded it into open
source. He’s been very active in the cloud native infrastructure community and shares
some possibilities and challenges as we move toward data on Kubernetes.

269

What the Kubernetes Duty Cycle Means for Data
With Craig McLuckie, Kubernetes OSS cocreator

In electronics, the term duty cycle describes the time period when a signal is active
in a system. In the IT domain, there are duty cycles associated with systems and
technologies, and in some cases these cycles can be extremely long. For example,
many people are surprised to learn that IBM continues to sell mainframes as a huge
part of its business. In recognition of the evolving landscape of cloud native, we
should anticipate a long duty cycle for Kubernetes as well. It’s projected that by 2024,
more than half of workloads running in public clouds will be hosted in Kubernetes,
representing a growth rate of 24% year over year.

As an early proponent of not running stateful workloads in Kubernetes, I was always
cautious to say it wasn’t ready for data…yet. Now, things are beginning to change.
Kubernetes began as a relatively simple way to orchestrate containers, but Kubernetes
represents key concepts that help build higher layers beyond just infrastructure. For
example, Kubernetes began as an ideal logical infrastructure abstraction and a way
to frame systems thinking. It provides a set of logical primitives decoupled from the
infrastructure that you can use to construct distributed systems. Now we’re seeing
applications like data infrastructure being built specifically for Kubernetes, which
opens a more interesting future.

Another key concept being adopted outside the Kubernetes core is the controller-
reconciler pattern. The Cluster API project uses Kubernetes-style APIs and the
controller-reconciler pattern to automate lifecycle management of Kubernetes clus‐
ters. Starting with a CRD, a well-formed Kubernetes cluster can be assembled from
infrastructure based on a declarative expression. This is a great example of the power
of the controller-reconciler pattern applied to custom resources that can be followed
for other infrastructure.

Following the convention of expressing as much as possible in a declarative context
can help us address the problems associated with data management. We can then
apply the pattern of choreography to handle fleet management of distributed data
infrastructure, one of the historical challenges of running data at scale. The use of
custom resources will be as disruptive as Kubernetes itself. There will be tremendous
utility and value in having controls and capabilities built on Kubernetes expressed
as an API. Bringing this platform-as-a-service (PaaS) mindset into enterprise organi‐
zations will enable developers to access data services in much the same way as they
interact with public cloud services.

The inversion of control (IoC) pattern provides us with a powerful technique to
build this type of infrastructure. Starting with a declarative description of the desired
service, a controller implementing the description will read the manifest, and render
and connect the components. Now combine that with the work done in Knative with
duck typing, which allows a resource to declare a dependency on another resource

270 | Chapter 11: Migrating Data Workloads to Kubernetes

https://oreil.ly/6kmTt
https://oreil.ly/ANlHt

using a well-defined syntax. An intelligent system can examine each resource as
it is provisioned to see if it matches any unbound dependencies and perform
dependency injection and binding. If we do our job right, we will start to build
application-aware platforms, a game-changing switch. In a world where applications
can express their data infrastructure needs declaratively, we can move away from
building infrastructure-coupled applications.

This level of automation doesn’t mean that infrastructure will be completely hands-
off, with nothing for SREs to do. Data infrastructure providers should strive to
provide high-level abstractions first, but also provide lower-level access. When con‐
structing systems, situations inevitably arise requiring users to be able to break glass
and look at the number of Pods configured, or tune resource allocations based on
insights into application behavior.

The world isn’t getting any less complicated for people building applications. Data
sovereignty laws are becoming more and more prevalent, and we are starting to think
in terms of “sovereign clouds” and even “national clouds.” When you layer on things
like edge computing, it gets even more complicated as you want to run compute
workloads closer to your users. Of the three main infrastructure resources—compute,
network, and storage—networking will become more and more important as highly
distributed use cases emerge.

Kubernetes offers a solution to these looming challenges—creating a unique opportu‐
nity to deliver an “as a service” experience into infrastructure that you control. The
real potency will come via highly optimized “as a service” experiences delivered via a
connected control plane into any infrastructure destination. Whoever can figure this
out will create a tremendous amount of usability and, ultimately, win the game.

Craig offers an inspiring vision for a future where infrastructure conforms to the
application instead of the infrastructure-coupled applications we have today. As
you’ve seen in the technologies we’ve explored in this book, the idea of declarative
infrastructure that reconciles via the Kubernetes control plane is everywhere. Now
we can begin to flip the script by building applications from the top down instead
of from the bottom up. This is an opportunity to change the way your organization
leverages data technology. Are you ready to start? It’s time to map out your journey.

Charting Your Path to Success
In preparing to migrate your stateful workloads to Kubernetes, you’ll probably have
a few questions in mind, like “What technologies should we use?” and “How will
we roll out the changes?” and “How do we make sure our team is ready?” Most of
these questions will map nicely to the classic IT framework of people, process, and
technology (PPT). Since every organization’s journey will be different, we’ll provide
recommendations in each category instead of a detailed roadmap. An important part

Charting Your Path to Success | 271

of your exercise is choosing what migrates into Kubernetes and what doesn’t. Every
migration should have a strong case.

You will likely have some of these recommendations in place already, so the actual
work needed is to ensure that your efforts in all three areas work together toward
your desired outcome. One word of warning: this is not the time to “run fast and
break things.” You’ll have plenty of time to do that after you have the core elements
in place. With a strong foundation, you will achieve levels of agility and speed you
haven’t seen before.

People
The core of any IT organization is its people. Migrating any workload to Kubernetes
represents a massive shift in mindset for your organization and requires proper train‐
ing and preparation. You will need people who understand the technology already or
are willing to learn. This requirement is even more true in preparing to migrate to
stateful workloads. Beyond the apparent tasks of training up on Kubernetes and read‐
ing books like this one, we’d like to draw your attention to two areas: specific job roles
that successful organizations execute well and leveraging open source communities as
a force multiplier for your teams.

Critical people roles for cloud native data
We could list many roles that are key to a successful migration, but we’ll highlight
three that are central to managing cloud native data and discuss how they relate:

Cloud architects
Architects provide technical direction to the development of cloud applications,
influencing everything from the clouds and regions where you’ll deploy your
applications, to the data infrastructure you’ll use. This includes when to rely
on self-managed open source projects versus managed services. An effective
cloud architect carefully selects technology to meet current business needs while
leaving room for future extensibility.

Site reliability engineers
In Chapter 1, we talked about adopting an SRE mindset. While this mindset is
something that every engineer in your organization should be working toward,
DBAs have an incredibly strategic opportunity to make the transition into an
SRE role. Instead of just deploying a database and walking away, a data-focused
SRE takes a holistic view of the data infrastructure and how it supports the
system’s overall goals, with an eye toward the best performance for the cost.

Data engineers
Whereas data scientists are concerned about extracting the value from data, data
engineers are responsible for operationalizing data. They build data processes,

272 | Chapter 11: Migrating Data Workloads to Kubernetes

assemble systems, and think about the end-user consumption of data products.
Data engineers should be versed not only in Kubernetes-based technology but
also in what cloud services can be used in concert for an optimized outcome.
Data engineers will play a significant role in selecting and deploying technology
that supports the AI/ML workloads we discussed in Chapter 10, composing
multiple components to create flows that deliver real-time insights into your
applications.

To think about how these roles work together in an organization, consider the
analogy of a farming operation:

• The architect is like the planner who determines what crops to grow, and in what•
quantities in each season.

• The SRE is like the farmer who plants and cultivates the crops to ensure they are•
healthy and productive.

• The data engineer is like a distributor who harvests the crops and ensures they•
reach their proper destination.

If you don’t already have these roles defined within your organization, don’t worry. In
many cases, it is possible to retrain engineers in your organization who are currently
in a different role.

Communities to fast-track your innovation
To paraphrase the sword-wielding old man in The Legend of Zelda, it’s dangerous to
go alone. Bring friends. Communities are a core part of working in technology, and
we work together, learn together, and share successes and failures. When embarking
on a new technology journey, look for the communities that form around that
technology. The following are a few notable communities in cloud native data. You
can seek them out for information, join the conversation, and hopefully contribute:

Cloud Native Computing Foundation
Also known as the CNCF, this organization is a part of the more extensive
Linux Foundation, a nonprofit organization devoted to open source advocacy.
The CNCF is the home for Kubernetes and many projects that run in Kubernetes,
including several featured in this book. You can see the amount of energy put
into Kubernetes native projects from the graduated and incubating projects list.
Members of CNCF pay a fee that goes to support the advocacy and administra‐
tion of the foundation and its projects.

The Technical Oversight Committee (TOC) approves and maintains the techni‐
cal vision for CNCF projects. With so many projects to maintain, Technical
Advisory Groups (TAGs) have been formed to handle cross-project concerns.
Each TAG maintains its autonomy within an initial charter to create a place for

Charting Your Path to Success | 273

https://www.cncf.io
https://www.linuxfoundation.org
https://oreil.ly/KSxmL
https://oreil.ly/KSxmL

similarly grouped projects to maintain interoperability standards. Each maintains
its own Slack workspace and mailing lists for community discussions.

All development activity for a project is centered around its GitHub repository.
To get involved in contributing code, search for the “good first issue” tag in
GitHub Issues for each project. If you have broader interests, you might consider
joining the conversation happening in TAGs to help shape future direction.
Twice a year, the KubeCon + CloudNativeCon user conferences are held by the
CNCF in North America, China, and Europe, with an enormous session list.
Some of the best sessions are the user stories about deploying specific cloud
native technologies.

Apache Software Foundation
The ASF is a nonprofit organization for software conservancy. ASF members
provide governance, services, and support for accepted projects. After going
through an incubation process, projects graduate to become top-level projects
where they earn the Apache name (e.g., Apache Cassandra, Apache Spark, and
Apache Pulsar). Each project is run independently by a project management
committee (PMC), and users with the right to make project changes are known
as committers.

It’s important to note the distinction between the project and user communities
around Apache projects. The project community is concerned with building the
project, and the user community is downstream and primarily focuses on using
the project in their applications. This separation of concerns is evident in the
two mailing lists available for most projects: dev@<project name>.apache.org and
user@<project name>.apache.org.

If you are interested in contributing code, jumping right in is the best way to
start. Apache projects use Jira to track changes and bugs. Look for “low hanging
fruit” or “good first project” tags on the Jira issues. In the user community, partic‐
ipating in the mailing list or Stack Overflow is a great way to start contributing
by helping others. Giving presentations about Apache projects is the lifeblood of
awareness for each project and one of the best contributions.

Data on Kubernetes Community (DoKC)
A different kind of organization than the CNCF and ASF, DoKC is a knowledge
community composed of industry vendors and end users. DoKC isn’t a place for
hosting software projects but a central gathering place for people in a growing
field within infrastructure. Technology vendors sponsor the community, but the
charter is to remain vendor neutral in all activities. Those activities include
in-person and online meetups, blogs on the dok.community website, and a com‐
panion event to KubeCon, DoK Day.

274 | Chapter 11: Migrating Data Workloads to Kubernetes

https://oreil.ly/xt2QR
https://oreil.ly/Ijlki
https://www.apache.org
https://oreil.ly/Odauf
https://dok.community

In addition to gathering the community, DoKC also produces useful resources to
guide users as they make decisions about data technology on Kubernetes:

• Given the number of data technologies available, the DoK Landscape has•
been created to help compare and evaluate the various options. You can
search by attributes such as open source versus commercial licensing, or
whether an operator or Helm chart is available.

• An annual DoK survey is also conducted to gauge industry opinions and•
provide guidance on common problems. The report is free and can be used
in your presentations.

As a knowledge community, the best way to participate in the DoKC is sharing
knowledge. When the community was being formed, the amount of information
about end users running stateful workloads in Kubernetes was scarce. Creating a
space to focus on data topics has led to a growing set of common interests and
concepts. Most of the interviews in this book came from people we met in the
DoKC.

Throughout the book, we’ve seen the benefits of contributions from each of these
communities toward making data technologies run effectively on Kubernetes:

• The PersistentVolume subsystem we discussed in Chapter 2 has provided a solid•
foundation for a wide variety of open source and commercial storage solutions
on Kubernetes.

• Operator frameworks we discussed in Chapter 5, including Operator SDK, Kube‐•
builder, and KUDO have proven to be a great enabler toward developing opera‐
tors for a variety of data infrastructure from the ASF and other open source
projects.

• Kubernetes StatefulSets (first introduced in Chapter 3) are an interesting case.•
While they have proven quite valuable for managing distributed databases, the
community has also identified some opportunities for improvement that we look
forward to seeing addressed in the future.

• Similarly, Spark and other projects in the analytics community have identified•
challenges with the Kubernetes default scheduler, as you learned in Chapter 9.
Thankfully, Kubernetes provides APIs for extending the scheduler that projects
like Apache YuniKorn and Volcano can leverage.

As you can see, plenty of work remains to be done in this ecosystem of interconnec‐
ted communities, and it will take contributions from all corners of the cloud native
world to get us to the next stage of maturity as an industry. Remember, community
participation isn’t limited to providing code to a project. One of the most important
contributions to any community is sharing your story. Think about your experiences
of learning new technologies, and you’ll likely recall good documentation, great

Charting Your Path to Success | 275

https://oreil.ly/HgYlL
https://oreil.ly/ZmaQu

examples, and the most valuable of all: “how we built this” stories. Please consider
sharing your story any way you can. Your community needs you!

Technology
For many of you, this is the most exciting part. Cool toys! As you consider your
journey to cloud native data, you’ll have important decisions in terms of the technol‐
ogies you choose to use and the way you integrate them into your applications. You’ll
recall from Chapter 1 the critical guiding principles for deploying cloud native data in
Kubernetes:

• Principle 1: Leverage compute, network, and storage as commodity APIs.•
• Principle 2: Separate the control and data planes.•
• Principle 3: Make observability easy.•
• Principle 4: Make the default configuration secure.•
• Principle 5: Prefer declarative configuration.•

As it turns out, these principles are useful for technology selection and integration,
which you’ll see next.

Selecting cloud native data projects
The years of building massive scale infrastructure, especially in data, have yielded
an enormous supply of tooling to pick from, provided by various vendors and open
source communities. For our examination here, we’ve made a deliberate choice to
reason in terms of selecting projects instead of selecting technologies. Projects encap‐
sulate the needed technology while integrating with the processes we need, created by
the people who will drive the success. You’re here because you believe Kubernetes is
one of these enabling projects, but how do you make your next set of choices? Here
are some principles we recommend:

Ready for Kubernetes
Chapter 7, outlined requirements for a Kubernetes native database, including:

• Maximum leverage of Kubernetes APIs•
• Automated, declarative management via operators•
• Observable through standard APIs (such as Prometheus)•
• Secure by default•

While not every project you use has to be Kubernetes native, the criterion
for being Kubernetes-ready is a bit broader. At a minimum, projects you use
should have an operator or Helm chart. The next level is a step toward the Kuber‐
netes native idea of built-in awareness of Kubernetes for deeper integration.

276 | Chapter 11: Migrating Data Workloads to Kubernetes

An example is Apache Spark, with the Kubernetes cluster deployment option
that uses specialized containers. The highest level of maturity is populated by
fully realized cloud native projects that can run only in Kubernetes because they
depend on components in a Kubernetes cluster. An example of this type of
project is KServe, which has no way of running outside of Kubernetes.

Open source
Using an open source project in the age of cloud native is about choice. You
can deploy what you need, where you need it. If you choose to use a managed
service based on an open source project, it should be completely compatible with
the open source version, with no restrictions in moving back to a self-managed
solution. Choosing the right license gives you the confidence to use a project
and maintain your choice. We recommend projects with the Apache License 2.0
(APLv2). All ASF and CNCF projects use this license, so projects from either
source guarantee you a permissive license. Many other licenses offer differing
levels of permissiveness and restrictions, and you should carefully consider how
they will affect your deployment and requirements.

Of course, project selections aren’t something you can do in isolation. Upstream
decisions influence each subsequent decision, and in turn can constrain what choices
are available. This is why, in many cases, it makes sense to look at combinations of
projects that work well together, either by deliberate design or by standard interfaces.

New architectures for cloud native data
The future of cloud native data should focus less on new projects and more on new
architectures. This means using the projects we have today in combinations that
make the best use of each. As we’ve discussed previously, the software industry has
a history of leveraging ideas from prior generations lasting a decade or more to
innovate from a new point of view. In the cloud native world, the past decade has
been spent building scale infrastructure, and the next 10 years will likely be about
how we can combine these projects for our needs.

The infrastructure community has historically demonstrated a fondness for integra‐
ted infrastructure stacks that solve a common set of problems. One example is the
LAMP stack popularized for web applications in the early 2000s, consisting of the
Linux operating system, the Apache HTTP Server, MySQL, and either PHP, Perl, or
Python, depending on who you asked. The 2010s brought us the SMACK stack for
big data applications, with the Spark engine, Mesos as the resource manager, Akka,
Cassandra, and Kafka.

While it’s tempting to describe such a stack for cloud native data, the reality is
that the variety of use cases and available projects are simply too large to come up
with a one-size-fits-all stack. Instead, let’s consider a candidate solution architecture
for a simple weather application case, as shown in Figure 11-1. This architecture

Charting Your Path to Success | 277

https://oreil.ly/61pjy

demonstrates the principles and recommendations discussed throughout the book,
leveraging our data infrastructure categories of persistence, streaming, and analytics.
This is a conceptual vision that we can discuss, critique, and improve as a community.
Each choice we’ve made here has alternatives and should be considered a starting
point for the sake of discussion.

Figure 11-1. Sample architecture for a weather application

Let’s walk through the flow of data to understand how this architecture satisfies the
needs of a weather application with multiple data requirements. We’ll assume that
the entire server-side infrastructure stack is contained in a single Kubernetes cluster.
More advanced forms of this architecture could include multicluster deployments or
inclusion of networking capabilities such as load balancing or Ingress. For now, this
will serve to illustrate the data architecture.

Weather data is collected from weather stations and posted to a waiting API with an
Ingress port into your running Kubernetes cluster. The business logic and server-side
application code are containerized and run as microservices in the application
Namespace. Client-side web and mobile applications also use the microservices via
API calls, so all external data communications pass through the microservices layer.

278 | Chapter 11: Migrating Data Workloads to Kubernetes

Real-time data is sent to Cassandra for immediate use in the persistence Name‐
space. Once the data is committed at the desired consistency level, change data
capture (CDC) emits the fully committed data to a Pulsar topic in the streaming
Namespace. A Pulsar sink exports the raw data into a Parquet file put in object
storage. At the same time, a Flink consumer subscribed to the topic analyzes new data
for user-defined limits such as high or low temperatures. If a boundary condition is
triggered, the temperature and station data is sent back to the microservices, which
will send push alerts to the user application.

In the analytics Namespace, two separate processes will use the Parquet data in
object storage. Spark Jobs are used to group temperature averages across geographic
data. This application code needs a wide view of the data stored for multiple locations
and times. Ray applies analysis code written in Python to accomplish the predictive
analysis of weather forecasting. The following five-day forecast is built daily by
looking at recent data and applying against models built over historical trends. Both
the Spark and Ray jobs populate new tables of fast transactional data in Cassandra.

This candidate architecture also demonstrates some recommendations that aren’t
specific to a weather application that you should consider for all your deployments:

Use Namespaces to separate domains within applications
Deploying hundreds of Pods into a Kubernetes cluster can create organizational
issues you won’t encounter with a small cluster on your laptop. Our recommen‐
dation here is simple: use Namespaces liberally to create order in your complex
deployments. In the weather application example, we used simple Namespaces
for each functional area of infrastructure: application, persistence, stream
ing, analytics, security, and observability. This approach will provide clear
boundaries and naming when addressing services or managing Pods.

Automate certificate management
In Chapter 8, we asserted that the best security solutions are the ones you don’t
have to think about. Automating your certificate management with cert-manager
is an excellent example of a solution that makes that a possibility. Use TLS for
all inter-service communication. For Ingress routes, ensure all traffic is HTTPS.
Both cases use ACME plug-ins to rotate and assign certificates and never suf‐
fer another outage due to an expired certificate. When a security audit comes
around, you can check the box that says you enforce all policies and guidelines
and that all network communication is adequately encrypted. Just do it.

Prefer object storage
When choosing storage for the stateful services in your Kubernetes cluster, you
should prefer object storage where possible. As discussed in Chapter 7, several
reasons behind this recommendation will put you in a better place for deploying
cloud native data. The primary one is the impact of immutability on separating

Charting Your Path to Success | 279

storage from running processes. Block storage is generally tightly aligned with
compute infrastructure and has a higher level of complexity. The tight coupling
between compute and storage must be broken to build truly serverless data
infrastructure. Object storage has proven to be a key enabler. You can choose to
implement your own object storage inside Kubernetes or via a cloud service.

Standardize on Prometheus APIs for metrics
Observability is mandatory for the complex infrastructure being built and run
in Kubernetes, and the Prometheus API is the most widely adopted for metrics.
Ensure that all services expose metrics in Prometheus format and that you collect
them in a single place. The Prometheus API is implemented on various backends
such as VictoriaMetrics and InfluxDB, giving you options for managing your
own Prometheus deployment or connecting to a cloud service. Finally, collecting
metrics is only one part of the challenge, and using those metrics to build
dashboards and alerting completes the package.

As this architecture demonstrates, you can now deploy all of the infrastructure
needed to support a complex application in a single deployment in Kubernetes. It’s a
flexible architecture in which new components can be tried and rejected or replaced
as your requirements change: are you using the database that best fits your applica‐
tion needs? Should data be analyzed in the stream or after it is at rest? Architecture
represents a series of choices based on capabilities, limits, knowledge, and philosophy.

We look forward to future conversations and conference talks sharing the patterns
that work and the antipatterns to avoid.

Deploy services, not servers
One pattern we recommend is to start delivering capabilities at a higher level of
abstraction: as services instead of servers. To help frame this discussion, think about
the architectural design of a building. An architect must understand a structure’s
requirements and then apply knowledge of materials and style to create a plan for
builders to implement. When an architect considers where to place a door, it must be
in a useful location, but one that will not weaken the overall structure. At no point do
they specify minute details such as whether the door has to have brass hinges.

In the software industry, we’ve historically required a lot of minute details about indi‐
vidual compute, network, and storage resources well before we get to the deployment
stage. For example, in the days of bare-metal infrastructure, the idea of installing
a server was a significant event. Each server represented a physical device with a
network connection that needed a whole bill of software, including operating system
and applications to fill its role in the system. Procuring, configuring, and deploying a
web server or database server was a process that could take months.

280 | Chapter 11: Migrating Data Workloads to Kubernetes

Along with the migration to cloud computing came the aphorism that we should
treat servers as “cattle, not pets.” Despite this helpful emphasis, the care and feeding of
individual servers persist in plenty of cases. Where a network server accepts requests
and then responds with data, it still requires people installing these systems to get
much further into the details needed for today’s cloud native applications. These
details create friction.

Kubernetes has encouraged a lot of progress in this area, emphasizing managing
fleets of both stateless and stateful services with Deployments and StatefulSets,
instead of focusing on individual Pods. It’s time to take this kind of thinking to
the next level, and Kubernetes gives us the tools to make it happen.

Consider how the architecture in the previous section can be described as a vertically
integrated service—a weather service—consisting of an assembly of microservices
and data infrastructure built from Kubernetes primitives for compute, network,
and storage. Recalling the “virtual datacenter” concept from Chapter 1, Figure 11-2
depicts the contents of a vertically integrated service that exposes a simple API. While
such a service could encompass a wide range of business logic and infrastructure, that
complexity is hidden behind a simple API.

Figure 11-2. Vertically integrated Service

Charting Your Path to Success | 281

Returning to the example of the preceding weather Service, let’s examine how this
represents a lot of power behind a deceptively simple API. When you zoom out, the
collection of deployed infrastructure looks like a function machine. Rather than a
simple microservice that merely gets and puts data records, this function machine
takes multiple inputs and produces multiple outputs, as shown in Figure 11-3.

Figure 11-3. Weather Service as a function machine

As a function machine, the weather Service takes a stream of temperature measure‐
ments and produces multiple outputs. Beyond the ability to retrieve the individual
records originally inserted, it produces value-added information like statistics, alerts,
and forecasts that help users make sense of the data and how it relates to them
personally.

A single traditional server won’t service the variety required, which is why modern
data infrastructure and architectures exist. It takes architectural work to assemble the
right parts, connect them, and create new data from the single input value.

Users and other applications expect service endpoints that respond to the data they
need. What happens inside the function machine is left to the implementation meet‐
ing the API contract. When thinking shifts to outcomes, it’s clear how deploying
services replaces the focus on deploying individual servers. Data services that can
operate at various scales, built with resilience, using automation to keep us from
worrying about minute details of the tools deployed. Using Kubernetes, you can
specify what the function machine will do by using compute, network, and storage
the same way you use any other consumable resource.

282 | Chapter 11: Migrating Data Workloads to Kubernetes

Process
Now that we have discussed the people and technology aspects of moving stateful
workloads to Kubernetes, let’s look at the practical process steps required to success‐
fully execute this transition. To be clear, process doesn’t mean more meetings or
people involved in decision making. The dictionary defines a process as “a series
of actions or steps to achieve a particular end.” For a cloud native deployment
process, let’s append the word “automated,” and that’s the right spirit. The goal is to
define and codify an automated process that enables you to deploy constantly with
confidence. You’ll know you’ve succeeded when you have not only a complete cloud
native application stack managed in Kubernetes, but also a repeatable set of steps to
reproduce that stack.

Where are you in your cloud native journey? You can be at the starting line or
somewhere further along. For either starting point, we recommend the stages shown
in Figure 11-4 for adopting cloud native data in Kubernetes.

Figure 11-4. Stages of moving data workloads to Kubernetes

Each stage contains core competencies developed by organizations that successfully
made this transition. You’ll want to adopt and stabilize these competencies before
moving on. Take your time and use the many resources available to become profi‐
cient in each stage. We’ll explore each stage in greater detail next.

DevOps practices
Before you even begin the adoption of Kubernetes, you should completely embrace
two areas of managing cloud native infrastructure:

Continuous integration/continuous delivery (CI/CD)
DevOps teams have already widely used CI/CD for years. Correctly imple‐
mented, the outcome is a system that gives you the agility to make changes
multiple times in a day with high confidence. For cloud native infrastructure,
this has also been described as GitOps. Using source control as the starting
point for infrastructure changes that a system like Argo CD will use to automate
deployments. Made a mistake? Roll it back.

Charting Your Path to Success | 283

https://oreil.ly/p20Gt
https://oreil.ly/fdj2s

Observability
You may have heard the phrase “Trust but verify,” and nowhere is that more
important than a highly complex cloud native deployment. You need to see what’s
happening and make adjustments, especially when using CI/CD. In the process
of building services that perform to meet SLAs, every step must be observed.
This builds confidence that the changes you make are working; if not, you can
roll back and try again. Every step is being watched and recorded.

While specific implementation details of your CI/CD and observability practices will
inevitably change as you begin to adopt Kubernetes, having a firm foundation in
these areas will set you up nicely for success.

Basic Kubernetes maturity
If you are just starting with Kubernetes, this is a vital stage. Setting up a basic
Kubernetes deployment on your laptop or cloud is an excellent way to learn, but your
first production Kubernetes projects will stress the capability of your operations. It’s
realistic to take several months in this phase to fully understand all of the potential
issues and solutions:

Deploying and managing clusters
This is the most fundamentally important experience you can have. While there
is great learning in building your own Kubernetes clusters and installing your
own databases, as we noted in Chapter 3, you can make progress toward produc‐
tion capability more quickly by using a managed Kubernetes service or tools like
Terraform that can help automate Kubernetes cluster deployments. You’ll get the
most value from learning how to deploy and connect services both inside and
outside the cluster, tasks that many new users find surprisingly tricky. You’ll also
want to understand the metrics collected for various elements of a cluster and
what they can tell you about performance and capacity.

Moving stateless workloads
Once you are proficient at working with Kubernetes and understand some of the
complexities, you can begin moving stateless workloads. The resource require‐
ments for these workloads tend to be more straightforward to understand, and
the body of prior art of deploying stateless workloads is deep. You’ll likely need
to manage external networking to stateful workloads and data infrastructure that
you aren’t yet moving during this stage. After a few successful migrations, you
should feel comfortable with managing production workloads in Kubernetes and
begin to see improvements in your operational tempo.

Here are a few competencies we recommend building as you start to move stateless
workloads:

284 | Chapter 11: Migrating Data Workloads to Kubernetes

Leverage continuous delivery
Using kubectl on the command line is great for learning, but terrible for daily
operations. Get used to managing groups of resources as services instead of
individual Pods and let the Kubernetes Operators do the work of maintaining
your systems.

Network routing and Ingress
Bad things happen when you fight the way Kubernetes works, and one place
that people new to Kubernetes fail is with network communications. You should
prefer service names over IP addresses and understand how the LoadBalancer
and Ingress APIs work.

Default security and observability
Deployed services should default to a secure state and expose observability inter‐
faces such as metrics endpoints with no manual configuration required. Ensure
that every new service is deployed with network-level encryption. To manage
systems effectively, SREs must have the metrics available to diagnose problems
without gaps in coverage.

These competencies will serve you well as you move into the following stages.

Deploy stateful workloads
The next stage is to migrate stateful workloads to Kubernetes, including their
supporting data infrastructure. In this case, we recommend a phased approach in
roughly the following order:

Persistence
We recommend migrating databases as your first stateful workloads. Databases
have been running in Kubernetes for far longer than other stateful workloads,
with a higher level of maturity and documentation. Chapters 4 and 5 provide
guidance on deploying with Helm and operators, respectively. Start with your
development environment and parallel the same production traffic loads outside
Kubernetes. Get proficient at backups and restore operations. Make sure your
test cases include the loss of database compute and storage resources and move
into staging and production when you feel your recovery response is sufficient.

Streaming
The Kubernetes readiness for streaming workloads is becoming much more
mature, but we still recommend you migrate these workloads after persistence
workloads. As we discussed in Chapter 8, streaming workloads have some unique
properties that can make them easier for migrations: most use cases don’t need
long-term message storage, so switching from one streaming service to the other
typically doesn’t require data migration. Since streaming is network intensive,
proficiency with Kubernetes networking is a must.

Charting Your Path to Success | 285

Analytics
The complex nature of analytic workloads makes them the next logical choice for
migration into Kubernetes after persistence and streaming are in place. A good
starting approach is to deploy analytic workloads into a dedicated Kubernetes
cluster so that you can learn the Kubernetes deployment modes and special con‐
siderations for job management and data access. Ultimately you should consider
using a different scheduler to support batch workloads such as YuniKorn or
Volcano, as we discussed in Chapter 9.

AI/ML workloads
You may consider your AI/ML workloads for extra migration bonus points. As
we discussed in Chapter 10, this is one of the least mature areas organizations
have concerning data infrastructure. Projects like KServe and Feast are well
suited for Kubernetes, so this isn’t the concern. The real question is whether your
organization is proficient in MLOps and data engineering. You may be ready, but
as a general recommendation for most organizations, this is an area you should
address after other analytic workloads.

The details of your specific adoption plan will vary according to your Kubernetes
readiness, the maturity of each workload, and the underlying data infrastructure on
which it is built. The Kubernetes native definitions in Chapter 7 provide a valuable
way of assessing the readiness of your infrastructure and where you may encounter
additional work to properly deploy and manage it on Kubernetes.

Continually optimize your deployments
In the early days of the internet explosion, known as the “dot-com” years, startups
were vying for venture capital and presenting plans. Almost every pitch deck would
include a slide showing the planned datacenter build-out. It was there for a good
reason: datacenters were a significant capital cost, and when asking for money, that
had to be in the budget.

Things are different today. Startups now rent what they need from a cloud provider,
and larger enterprises that still manage datacenters are reducing their footprints
quickly. In this cloud native world, we have a lot more flexibility over the infrastruc‐
ture we use, which gives greater opportunity for managing elements like cost, quality,
and the trade-offs between them:

Optimizing cost
In any business, you have things that add to the ledger and subtract. People
in finance call that the cost of goods sold (COGS). If you are building cars,
COGS may account for costs like steel, the factory, and labor. Selling cars covers
COGS and brings profit to the company. Controlling costs and making them
predictable is a way to create a sustainable business.

286 | Chapter 11: Migrating Data Workloads to Kubernetes

In application software technology today, there are four main components of
COGS: human labor, compute, network, and storage. These metrics have been
tracked for a long time, and a lot of progress has been made to reduce costs
and make things more predictable. DevOps has reduced the amount of human
interaction needed, and cloud has normalized infrastructure costs. As mentioned
in Chapter 1, Kubernetes wasn’t a revolution. It was an evolution and a place to
converge to help solve the problem of COGS with application software technol‐
ogy, a solution that doesn’t compromise on quality and creates predictability.

Elasticity is one aspect of cloud native data that can lead to significant cost sav‐
ings. If services are initially deployed with fixed capacity, optimize your deploy‐
ments with the ability to not only scale up but also scale down when needed.
When possible, use automation such as HorizontalPodAutoscaler for hands-off
scaling with the added benefit of scaling under load to maintain performance.
Choosing projects that can support elastic workload management is the most
crucial way to be sure you are getting the best performance for the cost.

Optimizing quality (availability and performance)
Reducing human toil reduces the number of people needed to run your Kuber‐
netes deployments. Automated deployments and sane defaults go a long way to
reducing labor, but self-healing infrastructure will reduce the number of people
that need to be on hand for when things go bad. Optimize your self-healing
deployments by testing the recovery of services by injecting failures into your
cluster. Kill a Pod or a StatefulSet. What happens to the surrounding services? If
that scenario makes you nervous, you need to optimize your Deployment until
you are comfortable with failures.

Reducing costs should never be optimized by sacrificing quality. Continuously
optimize for price and performance. As you constantly look to optimize your
Kubernetes deployments, you should ask yourself these questions:

• Are you maintaining SLAs?•
• Is the need for human interaction reduced?•
• Can you scale to zero with no traffic?•

Given the current trends in operations, AIOps is a term that will soon enter your
vocabulary, if it hasn’t already. AIOps doesn’t mean operations for AI/ML workloads;
it refers to the use of AI/ML to manage infrastructure intelligently. With a strong
baseline of observability, the metrics and other information you’re collecting can
be analyzed and used to generate recommended adjustments to your infrastructure.
Automated scaling up and scaling down of Deployments and StatefulSets is just the
beginning. We hope to soon see advanced AIOps capabilities, for example:

Charting Your Path to Success | 287

https://oreil.ly/AoiRm

• A system that detects increased usage of a vertically integrated service in a given•
region and responds by deploying microservices and supporting infrastructure
into that region, and proactively replicating data to optimize latency for client
applications.

• A multitenant system that detects when a particular tenant is demonstrating•
increased usage and migrates traffic for that tenant to dedicated infrastructure.

These are just a couple of examples of what we might be able to achieve. We
already have the foundations in the controller-reconciler pattern implemented by the
Kubernetes control plane. Today’s operators are heavily procedural, but what kind of
decision flexibility could we build into future operators in order to achieve a desired
quality of service? Stay tuned, because the cloud native world is constantly evolving.

The Future of Cloud Native Data
Over the course of a career in information technology, you’re likely to see several gen‐
erational shifts. A subtle evolution occurs over five- or ten-year periods as changes
slowly build on a previous generation of technology, until the day you realize that
the way you work is fundamentally new. Perhaps you’ve spent part of your career
installing operating systems on physical servers. In a more recent generation, we’ve
started using scripts to provision cloud instances with operating system images
ready for software to be installed. Kubernetes represents the latest generation, where
engineers define everything they need in a text file, and the control plane converges
the state while performing all of the tasks every previous generation of engineers had
to do manually.

What kind of progress will we continue to see from generation to generation? The
following is a fictional story about a very possible near future. This story provides an
example of where we could go as a community of data infrastructure engineers. The
changes will be subtle but profound.

A Vision of a Not-Too-Distant Future
The kickoff meeting

I arrive Monday morning in the office and see an email invitation to a meeting
from one of our product managers. Our company has been growing at a fast
pace, and to stay ahead of our competition, we constantly release new products.
The meeting will be a kickoff with everyone from user experience to the backend
infrastructure. Somebody dreamed up a new app, so here we go.

Product management shares a one-pager with an ambitious, groundbreaking
idea requiring everyone to make it work. The room is divided into groups
of people you see in any product build: user experience and interface design,

288 | Chapter 11: Migrating Data Workloads to Kubernetes

microservice developers, data engineers, and my team, responsible for the back‐
end infrastructure. We collaborate closely across teams to move quickly and keep
our customers happy.

In the meeting, it’s clear that nobody is sure of how big of an idea this is and
thus we have no idea of the needed capacity. While we used to expend a lot of
energy on infrastructure planning and wasted a lot of money by provisioning too
early, we don’t have to do this anymore because our systems will adapt to what’s
needed. Things happen, and plans change. If we’re lucky, an idea will take off like
a rocket and then we’ll scale to a global user base. Our job is to build the right
product with quality and be ready for whatever comes.

Confidence booster
One aspect of my job I love is getting requirements and designing the right
infrastructure to do the job. I’m inspired by the building architect I. M. Pei, who
worked with clients to translate their vision into a functional reality, and one of
his famous quotes: “Success is a collection of problems solved.” He maintained
the beauty and elegance of the original requirements and built things with a
purpose, like the Grand Louvre and Kennedy Library. I’m not saying that I’m the
I. M. Pei of data infrastructure, but his example is inspiring.

The first task I have is reasoning through each piece of the data infrastructure
like a puzzle. It reminds me of the LEGO projects I created as a kid. I’ll need a
square piece, a rectangular piece, a specialty piece with a hinge, and that round
dot that always seems to get lost. I help the development teams identify the data
infrastructure components that will support this particular application: there’s a
mix of transactional data managed by various microservices, and we put together
the right combination of databases, object storage, transformations, and streams
to store, enhance and move data where it’s needed. The data engineers highlight
the data sets they will need to analyze business results and produce intelligent
recommendations that will make the application work better for our users.

The initial architecture decisions aren’t final; in most cases, the infrastructure
we’re building will automatically evolve. The basic parameters are defined by
the application’s needs according to its API contract. I set boundaries around
costs and location and let Kubernetes and my operators figure out the rest
intelligently. The system makes adjustments by analyzing usage to lower latency
while remaining at or below budget. The solution I want is the one that gives me
the lowest cost while still meeting our SLAs.

No plans survive contact with the enemy
We decide to roll out the new application with an initial pilot in North America.
We deploy a Kubernetes cluster and install the application and supporting data
infrastructure using automated scripting we’ve built up in previous projects
and then run a few automated performance and compliance tests. The CI/CD
pipeline reduces the time to deploy fixes for a couple of minor defects we found
in testing to just a few minutes. Since we’ve automated the data collection and

The Future of Cloud Native Data | 289

observability tools, it takes only a couple of hours for the quality and security
teams to sign off on the application, and we are live!

At the product launch, things are looking great. From the first meeting to the
final product approval, our time span was a few days, and everything is working
as designed. The user experience and development engineers weren’t waiting on
us to provision infrastructure, so they could spend their time focusing on what
made the product a delight for our customers. The application is working as
designed, and we are continuing to refine and improve. I’m sure we’ll get the
go-ahead to start expanding into new regions soon.

On my way to work, I see on the news that storms threaten to shut down large
parts of the eastern United States. I check my alerts and see the notifications
from our service providers: “Due to the worsening storm conditions, the follow‐
ing locations will be flagged for evacuations…” They aren’t just talking about
human evacuations; these are infrastructure evacuations. Since our applications
can route around datacenter failures, our providers don’t have to put people
in harm’s way. Heroic efforts to fulfill fuel contracts and keep the generators
running aren’t needed now.

Years ago, this might have caused a Tier 1 emergency, but now our systems are
resilient against both natural and human-error disasters. When providers post an
evacuation warning, our intelligent operators ingest the new parameters and start
reconciling a solution: finding new capacity, negotiating the price, and shutting
down the affected areas. Even without a warning, like when human error is
involved, our application will still be online. Intelligent geographical redundancy
insulates us from localized problems, like somebody accidentally cutting a net‐
work or power cable. I feel bad for the people who are stuck maintaining legacy
applications. Those systems have no way of managing an emergency, and it’s left
to the humans to figure it out. Somebody is going to have a late night, and I’m
thankful it isn’t me.

It’s a hit!
A few days later, I get an email about how our new application has taken off in
Europe. Our management has questions about our infrastructure capacity and
potential effects on our SLA. We want to provide a good user experience, no
matter how users find us or where they are. I reply with confidence that we have
things covered because our infrastructure has already detected the new usage
pattern and anticipated the needed changes. There’s not much for me to do other
than verify that our SLAs are being met and watch it work.

When I examine the updated deployment, I see adjustments to my initial archi‐
tecture. In addition to the expansion in storage capacity and compute processing
I expected to see, I notice that the faster and more expensive streaming pipelines
I started with have been changed out for slower but more cost-effective rollups
in batch analytics. This is the result of continuous analysis of the traffic patterns
by our intelligent operators in response to observing user interaction. I can see

290 | Chapter 11: Migrating Data Workloads to Kubernetes

that the application’s response rate will be improved without the need to have the
streaming pipeline results immediately. This provides a better user experience for
a smaller cost, with no application code changes required.

Shortly after, our data engineering team reaches out. After analyzing the appli‐
cation usage patterns, they’ve identified some improvements to the recommen‐
dation engine the application uses. Working together, I add a new stream to
push more operational data to an analytic store while they add analytic jobs
to generate new feature data. The microservice developers do some quick A/B
testing with the new recommendation data to verify that customers can make
decisions more quickly, so we roll the changes out to the entire fleet. Our PR
team shares an unsolicited article about how people are starting to notice the
application. Is this our viral moment? We’re not sure yet, but the management
team is definitely excited.

No worries
Weeks later, I meet with the product manager to discuss changes for the next
product rollout. They are delighted that things worked so seamlessly. I remind
them that this is how people build cloud native applications these days. We don’t
deploy infrastructure; we declare it. My job isn’t dominated by editing configura‐
tion files and spending time in a terminal. I spend my time listening to teams
and working with them on what they need. Like I. M. Pei, I enjoy the creative
process of defining elegant architectures. My focus is to design something that
makes it easy for developers to be productive on the first day while giving our
end users an amazing experience. With a modern Kubernetes native approach, I
define what I need and worry a lot less about the how. Because most of what’s
deployed is open source, I can even take time to fix little things and contribute
back to a project.

The area I never worry about is having to deploy something. I never have to ask
if it will work or if there are a lot of trade-offs. I define what the application
needs, and it will emerge. Having development timelines of days or hours instead
of months is a great place to be.

This story aims to help you look beyond the drudgery of configuration files and
the shiny distraction of hot new projects and focus on how embracing cloud native
data opens the door for a more fantastic tomorrow. When the toil of infrastructure
is reduced or even removed, think of the new abilities we have and how this could
translate into tangible daily outcomes. This isn’t science fiction, and you don’t have
to wait for the next generational breakthrough. All of this is feasible today with the
correct application of existing technology.

The Future of Cloud Native Data | 291

Summary
You made it! We have taken quite a journey together and covered a lot of ground,
not only in this chapter but in the entire book. At the outset, we presented an
ambitious goal of putting stateful workloads on Kubernetes. As we learned from
Craig McLuckie, this is very much in line with the original goals of the Kubernetes
project. Ultimately, we will reverse the trend of infrastructure-aware applications and
have application-aware platforms and building applications with speed, efficiency,
and confidence.

Hopefully, we’ve convinced you that this is achievable technically and extremely com‐
pelling from a cost and quality standpoint. In this chapter, we’ve focused on helping
you chart the course to make this transition by focusing on the people, process, and
technology changes you’ll need to make to be successful:

• Help people in your organization skill up on Kubernetes and data technologies,•
including those we’ve covered here. If you are in leadership, help place people
in roles that give them direct responsibility and accountability for infrastructure
choices. Empower them to interact and contribute in open source communities
and be the catalyst for change in your organization.

• Select data infrastructure technologies that embody cloud native and Kubernetes•
native principles. Use Kubernetes custom resources and operators to raise the
level of abstraction in your architecture to begin thinking about managing serv‐
ices that implement well-defined APIs instead of managing individual servers.

• Update your processes to automate “all the things”—from integration and deliv‐•
ery (CI/CD) to observability and management (AIOps). Leverage these mature
processes as you strategically migrate stateful workloads to Kubernetes. Carefully
balance the trade-offs between cost and quality to sustainably deliver the best
experiences for your end users.

Now, the narrative of this journey shifts to you and where you choose to take us next.
While this book has provided a broad overview of the world of data infrastructure
on Kubernetes, each chapter could easily fill a book on its own. We encourage you to
continue learning where your specific interests take you and share what you learn to
continue to fill the gaps in our collective knowledge. As you successfully manage your
cloud native data on Kubernetes, we hope to hear your story.

292 | Chapter 11: Migrating Data Workloads to Kubernetes

Index

A
access modes, choosing, 35
ACID (atomicity, consistency, isolation, dura‐

bility) transactions, 265
ACME (Automated Certificate Management

Environment) protocol, 207
Advanced StatefulSet, 76
affinity, 96
AI Fairness, 253
AI/ML (artificial intelligence/machine learn‐

ing)
about, 221
defining stacks, 250
definitions, 248
stateful workloads and, 286

Alertmanager, 150
algorithm, 248
Ali, Saad, 43
alpha implementation, 164
alternative schedulers, 233-240
Amazon Elastic Filestore, 25
analytic engines, 240-246
analytics

batch, 10, 221
stateful workloads and, 286
streaming with Apache Flink, 212-217

“Analytics on Kubernetes Is the Next Frontier”
(Karau), 233

Anderson, Jesse, 200
Ansible, Operator Capability Model and, 128
anti-affinity, 96
anti-entropy mechanisms, 154
Apache Arrow, efficient data movement with,

261-264

Apache Bookkeeper, 204
Apache Cassandra, 1

(see also K8ssandra/K8ssandra Operator)
about, 10, 25, 47
accessing, 78
deploying using Helm, 94-99
managing with Cass Operator, 143-147
production-ready, 135-143
running on Kubernetes, 65-80
serverless, with DataStax Astra DB, 182-189

Apache Flink
about, 9, 10
deploying on Kubernetes, 214-217
streaming analytics with, 212-217

Apache Hadoop, 10
Apache Kafka, 10, 201
Apache Lucene, 259
Apache Pulsar, 8, 202-212
Apache Solr, 252, 259
Apache Spark

about, 8, 10, 224
deploying in Kubernetes, 226-229
Kubernetes Operator for, 230-232
security considerations, 229

Apache YuniKorn, 235
Apache ZooKeeper, 204, 257
API layer, 148
API server, 105
APIs (application programming interfaces), 15,

147-150
Application Mode (Apache Flink), 215
application-aware platforms, 269
applications

deploying with Helm charts, 82

293

multicluster, 159-165
running, 228
searching for, 259
separating domains within, 279
submitting, 228
visualizing larger Kubernetes, 125

architecture
for cloud native data, 277-280
K8ssandra, 136
microservice, 192
of data storage, 42-49
TiDB, 170-173

ASF (Apache Software Foundation), 274
at-least-once delivery, 197
at-most-once delivery, 197
auto-deletion, 77
auto-scaling, TiDB and, 174
automation

of certificate management, 279
of database deployment with Helm, 81-101
of database management with operators,

103-133
AWS (Amazon Web Services), 30
awsElasticBlockStore volume, 30
azureDisk, 31
azureFile, 31

B
backing up data, with Cassandra Medusa, 156
Baker, Bill, 69
batch analytics, 10, 221
BentoML, 251
bias, 250
BigQuery, 256
bind mounts, 21
binding plug-ins, 105
BinPack plug-in, 239
Bitnami Helm, 83, 97, 98
block storage, 25
Bogdanov, Nikolay, “Computing Kubernetes

operators for PostgreSQL” blog post, 129
Borg, 109, 126
Bound status value, 36
bounded streaming, 213
Bradford, Christopher, “A Case for Databases

on Kubernetes from a Former Skeptic”, 51
Branscombe, Mary, “When to Use, and When

to Avoid, the Operator Pattern” blog post,
130

Brewer, Eric, 169
Brokers (Apache Pulsar), 204

C
CA (certificate authority), 207
Calvin paper, 170
CAP theorem, 154, 169
Carpenter, Jeff

“Data Services for the Masses”, 148
“Deploy a Multi-Data Center Cluster in

Kubernetes” blog post, 160
“A Case for Databases on Kubernetes from a

Former Skeptic” (Bradford), 51
Cass Operator

about, 129, 136, 140
customizing Cassandra images used by, 146
features for, 147
managing Apache Cassandra with, 143

Cassandra (see Apache Cassandra)
Cassandra Medusa

about, 137, 140
backing up data with, 156
restoring data with, 158

Cassandra Reaper, 136, 140, 154
Cassandra: The Definitive Guide, 66
CASSANDRA_CLUSTER_NAME, 73
CASSANDRA_DC, 73
CASSANDRA_RACK, 73
CASSANDRA_SEEDS, 73
CDC (change data capture), 279
cells, in Vitess Operator, 115
Ceph, 47
cert-manager, securing communications by

default with, 207-211
certificate management, automating, 279
Chart.yaml file (Helm), 87
charts (Helm), 82
Chircop, Alex, 19
Chirica, Laurian, 219
CI/CD

about, 283
Apache Flink and, 213
as a skill for SRE, 13
Helm and, 99-101
leveraging, 285
tools for, 81

Cilium, 164
cinder volume, 31
class attribute, 35

294 | Index

ClickHouse, 172
client library, 151
ClientConfig, 163
clients, extending, 105
cloud architects, 272
Cloud Controller Manager, 106
cloud databases, 182
Cloud Hypervisor, 181
cloud native AI/ML stack, 248-260
cloud native data

about, 4
architectures for, 277-280
communities in, 273-275
components, 10
critical people roles for, 272
future of, 11-17, 288-291
infrastructure of, 1-17, 14
selecting projects, 276

cloud native streaming, 200
cloud native, defined, 5
cloud services, community-focused innovation

through, 193
cloud volumes, 30
Cloudera, 235
Cluster API, 270
Cluster Manager (Apache Spark), 226
ClusterIP Service, 61
clusters, deploying and managing, 284
CNCF (Cloud Native Computing Foundation),

4, 42, 126, 273
CNI (Container Network Interface), 106
CNN (convolutional neural networks), 259
Codd, Edgar, 169
code knowledge, as a skill for SRE, 13
COGS (cost of goods sold), 286
commodity APIs, 15
communications, securing by default with cert-

manager, 207-211
communities, in cloud native data, 273-275
Compaction Service, in Astra DB, 185
compaction, as a node capability, 183
components, of cloud native data, 10
compute, 8, 106
“Computing Kubernetes operators for Post‐

greSQL” blog post (Bogdanov), 129
ConfigMaps, 29, 91
configuration options, for MySQL Helm charts,

84
configuration volumes, 29

Conformance plug-in, 239
consensus, 170
consistency, of data, 170
constraints, scheduling, 99
Container Attached Storage pattern, 32, 45
container runtime, 107
“Container Attached Storage: A Primer”

(Powell), 45
containerization, 7
containers

about, 3, 20
init, 26
sidecar, 26, 146

continuous profiling, TiDB and, 174
contract, 197
control plane

about, 16, 26, 104-107
extending components of, 105
in Astra DB, 184

controller manager, 106
controller plug-in, 43
controller-runtime project, 109
controllers

custom, 107
events and, 109
operators vs., 112
writing custom, 109

coordination layer, 148
Coordination Service, in Astra DB, 184
coordination, as a node capability, 182
COSI (Container Object Storage Interface),

47-49
cost, optimizing, 286
CQL (Cassandra Query Language), 65
CRD (Custom Resource Definition), 105, 110,

139, 174, 270
Crossplane, 164
CRUD (create, read, update, and delete) opera‐

tions, 148, 199
CSI (Container Storage Interface)

about, 40, 43, 106
documentation, 43
migration, 44

custom controllers and operators, 107
Custom Executor container, 227, 228
custom resources, 101, 110-112

D
DaemonSets, 79

Index | 295

DAG (Directed Acyclic Graph), 224
DAOs (data access objects), 148
Dask, 242
data

backing up with Cassandra Medusa, 156
consistency of, 170
efficient movement with Apache Arrow,

261-264
infrastructure of, 53, 135-165
integrity of, 265
language for recovery of, 159
managing replication of, 69
principles of, 168
restoring with Cassandra Medusa, 158
streaming on Kubernetes, 195-217

data analytics
about, 219
alternative schedulers for Kubernetes,

233-240
analytic engines, 240-246
Apache Spark, 224-229
Apache YuniKorn, 235
Dask, 242
deploying analytic workloads, 221-224
deploying Apache Spark, 226-229
evolution of, 241
Kubernetes Operator for Apache Spark,

230-232
on Kubernetes, 219-246
Ray, 244
Volcano, 237-240

data API gateway, 148
data engineers/engineering, 200, 272
data plane, 16, 184
Data Service, in Astra DB, 185
data storage

about, 19
architecture of, 42-49
choosing solutions for, 32
containers, 19-25
Docker, 19-25
formats for, 25
Kubernetes resources for, 26-49
managing analytic workloads and, 222
managing on Kubernetes, 9, 19-49
Pods, 26-33
state, 19-25
volumes, 26-33

data workloads, migrating to Kubernetes,
269-291

“Data Services for the Masses” (Carpenter), 148
database engines, 172
databases

about, 51
accessing Apache Cassandra, 78
accessing MySQL, 63
automating deployment with Helm, 81-101
automating management with operators,

103-133
cloud, 182
DaemonSets, 79
Deployments, 56-60
“the hard way”, 52
Kubernetes and, 11
managed NoSQL, 182
NewSQL, 182
prerequisites for running infrastructure on

Kubernetes, 53
ReplicaSets, 54
running Apache Cassandra on Kubernetes,

65-80
running MySQL on Kubernetes, 53-65
StatefulSets, 67-78
traditional, 182

datacenters, 66, 144
DataStax, 129, 143, 182-189
“DataStax Astra DB: Designing a Serverless

Cloud-Native Database-as-a-Service”, 183
DBA (database administrator), 13
DBaaS (database as a service), 129, 164, 182
DBCluster operator, 113
delivery, 196, 197
“Deploy a Multi-Data Center Cluster in Kuber‐

netes” blog post (Carpenter), 160
Deployments, 56-60
Designing Data-Intensive Applications (Klepp‐

mann), 170
developers, 147-150, 241
device plug-ins, 106
DevOps, 6, 13, 81, 181, 283
disaster recovery planning, 202
distributed computing, 14-17
DM (Data Migration) platform, 175
DNS (domain name resolution), 160
Dobies, Jason, Kubernetes Operators, 131
Docker

managing state in, 21

296 | Index

named pipes, 23
Tmpfs mounts, 23
volume drivers, 24
volumes, 22

Docker Engine, 24
Docker Hub, 146
Docker Image tags, 228
docker run command, 24
Document API, 148
DoK Landscape, 275
DoK survey, 275
DoKC (Data on Kubernetes Community), 274
downward API volumes, 30
DRF (Dominant Resource Fairness) plug-in,

239
drift, 250
DRY (“don't repeat yourself ”) principle, 100
duck typing, 270
duty cycle, 270
dynamic provisioning, 39, 41

E
EBCDIC (Extended Binary Coded Decimal

Interchange Code), 261
EBS (Elastic Block Storage), 30, 45
EKS (Elastic Kubernetes Service), 61, 160
elasticity, of cloud native applications, 4
Elasticsearch, 259
ELB (Elastic Load Balancer), 61
environments, preparing, 205
ephemeral volumes, 28
etcd, 106
ETL (extract, transform and load), 170
events, controllers and, 109
eventual consistency, 154
exactly-once delivery, 197
execution, analytic workloads and, 222
extensibility, Helm and, 100
extension points

about, 104
for clients, 105
for components of control plane, 105
for Kubernetes Worker Node components,

106
ExternalName Service, 62

F
F1 project (Google), 170, 180
FaaS (functions as a service), 182

Failed status value, 36
FAISS (Facebook AI Similarity Search), 259
fast storage, 49
Feast, 251, 255-258
feature scope, 198
features, 249
fibreChannel volume, 31
file storage, 25
Flexvolume, 42
flink command, 216
flow, 249
FPGA (field-programmable gate arrays), 106,

260
Functions (Apache Pulsar), 205

G
GA (general availability), 44
Gang plug-in, 239
GCE (Google Compute Engine), 31
gcePersistentDisk volume, 31
GKE (Google Kubernetes Engine), 173
Gluster, 25
gluster volume, 31
Go, 109, 128
GoJek, 256
Google, 109, 114, 126, 219, 256
Google Cloud Filestore, 25
Google Spanner, 170, 180
Google's F1 project, 170, 180
GPG (GNU Privacy Guard), 210
GPUs (graphics processing units), 106
Grafana, 137, 143, 150-154
GraphQL API, 148
gRPC API, 148
guarantees, delivery, 197
Guido, Sarah, Introduction to Machine Learn‐

ing with Python, 250

H
Hausenblas, Michael, Programming Kuber‐

netes, 78, 109, 131
HDFS (Hadoop Distributed File System), 224
Helm

about, 82
automating database deployment with,

81-101
ConfigMaps and, 91
deploying Apache Pulsar using, 211
deploying applications using, 82

Index | 297

deploying MySQL using, 83-94
deploying using Apache Cassandra, 94-99
how it works, 87
labels and, 89
limitations of, 100
Operator Capability Model and, 128
power of, 99-101
Secrets and, 90
ServiceAccounts and, 90
TiDB Operator options, 176
uninstalling charts, 94
updating charts, 93

helm install command, 87
helm repo update command, 93
helm template command, 95
Hightower, Kelsey, 52, 104
HNSW (Hierarchical Navigable Small World),

259
HorizontalPodAutoscaler, 287
hostPath volumes, 30
Vedetskyi, Dmytro, “How to deploy your first

app with Kudo operator on K8S” blog post,
131

“How to deploy your first app with Kudo oper‐
ator on K8S” blog post (Vedetskyi), 131

HPC (high performance computing), 237
HTAP (hybrid transactional/analytical process‐

ing), 170
Huang, Dongzu (Ed), 180
Hueske, Fabian, Stream Processing with

Apache Flink, 217
hybrid data access, at scale with TiDB, 169-181
hypervisor layer, 20

I
IaaS (infrastructure as a service), 182
IAM (Identity and Access Management) Ser‐

vice, in Astra DB, 185
IBM, 261
Identity, 67
image upgrades, as a feature of Cass Operator,

147
in-tree storage plug-ins, 40, 42
inference, 250
infrastructure

about, 1
in Astra DB, 184
problems with, 6
types of, 2

Ingress, 285
inheritance, Helm and, 101
init containers, 26
initial rollout, 59
initialization tasks, TiDB and, 174
installing

K8ssandra Operator, 137-140
TiDB Operator, 175
Vitess Operator, 118

Introduction to Machine Learning with Python
(Miller and Guido), 250

IoC (Inversion of control) pattern, 270
iscsi volume, 31

J
Jenkins, 99
Jira, 274
JMX (Java Management Extensions), 146
job queue management, 234
JobManager, 212, 214
jobs (Volcano), 238
JSON schema, 112
JVM (Java Virtual Machine), 241

K
K9s, 125
Kalavri, Vasiliki, Stream Processing with

Apache Flink, 217
Karau, Holden, 223, 233, 265
Karmada (Kubernetes Armada), 164
K8ssandra/K8ssandra Operator, 1

(see also Apache Cassandra)
about, 100, 129, 135, 137, 155
architecture, 136
data recovery and, 159
installing, 137-140

K8ssandraCluster, 141, 163
KEP (Kubernetes Enhancement Proposal), 77
keyspace, in Vitess Operator, 115
Kleppmann, Martin, Designing Data-Intensive

Applications, 170
Knative eventing, 253
KNN (k-nearest neighbors) algorithm, 258
Kraus, Keith, 262
Krew, 105
KServe, 251, 252-255, 258
kube-prometheus, 150
Kube-proxy, 107
Kubebuilder, 131

298 | Index

“Kubebuilder vs Operator SDK” blog post (Tei),
131

kubectl apt-resources command, 110, 139
kubectl command, 28, 105
kubectl describe command, 109
kubectl describe crd command, 111
kubectl describe pod command, 109
kubectl get command, 109
kubectl get crd command, 110, 174
kubectl get deployment command, 58
kubectl get pod command, 28
kubectl get sc command, 39
kubectl get services command, 64
kubectl get vitesskeyspaces command, 112
kubectly describe persistentvolume command,

36
KubeFed (Kubernetes Cluster Federation), 160,

163
Kubeflow, 251
Kubelet, 106
Kubernetes

about, 3, 7
analytic engines for, 240-246
data analytics on, 219-246
databases and, 11
deploying multicluster applications in,

159-165
deploying TiDB in, 173-181
managing compute on, 8
managing data storage on, 9, 19-49
managing network on, 9
migrating data workloads to, 269-291
streaming data on, 195-217
streaming on, with Apache Pulsar, 202-212

Kubernetes control plane (see control plane)
Kubernetes Ingress, 62
Kubernetes native database, 1

(see also databases)
about, 167
approaches for, 167
building serverless Cassandra, 187
hybrid data access at scale with TiDB,

169-181
roadmap for, 180
serverless Cassandra with DataStax Astra

DB, 182-189
what to look for in, 189-193

Kubernetes Operator, for Apache Spark,
230-232

Kubernetes Operators (Dobies and Wood), 131
Kubernetes stacks, integrating data infrastruc‐

ture in, 135-165
Kubernetes Worker Nodes, 26, 30, 43, 66, 79,

83, 97, 106
KUDO (Kubernetes Universal Declarative

Operator), 131
Kurktchiev, Boris, “3 Reasons to Bring Stateful

Applications to Kubernetes”, 51
Kustomize tool, 94

L
labels, Helm and, 89
lakeFS, versioned object storage with, 264-267
language, for data recovery, 159
least privilege, for operators, 121
Lens tool, 125
LF AI & Data Foundation, 260
lifecycle management

about, 68
options for, 72
StatefulSets, 74
with Feast, 255-258

limits (YuniKorn), 237
livenessProbe command, 72
LoadBalancer Service, 61
local PersistentVolumes, 34-36
logic complexity, Helm and, 100
Longhorn, 46
LSM tree (log-structured merge tree), 172
Luan, Xiaofan, 259
Luciani, Jake, 187

M
managed NoSQL databases, 182
MapReduce paper, 224
MCAC (Metrics Collector for Apache Cassan‐

dra), 152
McKinney, Wes, 262
McLuckie, Craig, 269
message broker, 199
Metacontroller, 126
metadata, 49, 71
metrics, exporting from Apache Cassandra, 95
microservices, 47, 192
Microsoft Azure, 31
Miller, Andreas C., Introduction to Machine

Learning with Python, 250
Milvus, 252, 258-260

Index | 299

minReady Seconds setting, 77
ML (machine learning)

about, 247
bridging models with Feast, 255
cloud native AI/ML stack, 248-260
operationalizing models with KServe,

252-255
MLOps (machine learning operations), 253
model, 249
MongoDB, 10, 129
Moore's law, 8
mountOptions, 35
Mova, Kiran, 47
MPP (massively Parallel processing), 240
Mufti, Umair, 131
Multi-Cluster Services API, 164
multiclusters

about, 192
deploying applications in Kubernetes,

159-165
Helm and multicluster deployments, 101
topologies for, 144

multidimensional architectures, scalability
through, 191

“Multi-Region Cassandra on EKS with K8ssan‐
dra and Kubefed” blog post (Srinivas), 160

multitenancy, 192, 234
MVC (model-view-controller) framework, 132
MySQL

about, 10
accessing, 63
deploying with Helm, 83-94
managing using Vitess Operator, 114-127
running on Kubernetes, 53-65

N
Nadeau, Jacques, 262
named pipes, 23
Namespaces

isolating resources using, 85
Kubernetes resource scope and, 86
separating domains within applications

using, 279
national clouds, 271
NDM (Node Disk Manager), 46
Nessie, 265
networks

managing on Kubernetes, 9
multicluster requirements, 160

plug-ins for, 106
routing, 285

NewSQL databases, 182
NFS (Network File System), 25, 46
nfs volume, 32
Node affinity, 98
node exporter, 151
node plug-in, 43
node replacement, as a feature of Cass Opera‐

tor, 147
node sort policy (YuniKorn), 237
nodeAffinity, 35
NodeOrder plug-in, 239
NodePort Service, 61, 65
NodeSelectors, 99
nodetool drain command, 74
NoSQL, 10
NUMA-aware plug-in, 240
NVMe disks, 9

O
object storage, 25, 279
observability

Apache Flink and, 214
as a skill for SRE, 13
default, 285
DevOps and, 284
of cloud native applications, 5

OCM (Open Cluster Management), 164
OLAP (online analytical processing), 8, 172
OLM (Operator Lifecycle Manager), 128
OLTP (online transaction processing), 180
OnGres, 143
open source projects, 277
open source services, community-focused

innovation through, 193
OpenAPI v3 schema, 112
OpenEBS, 45
OpenStack, 31
operations, Helm and, 99-101
Operator Capability Model, 128
Operator Framework, 127-133
Operator Hub, 128
operator pattern

about, 107
controllers, 107
custom resources, 110-112
operators, 112

Operator SDK, 126, 130

300 | Index

operators
about, 112, 131
automating database management with,

103-133
building, 130
choosing, 127-130
controllers vs., 112
custom, 107
ecosystem of, 127-133
in Astra DB, 184
least privilege for, 121

OrderedReady policy, 74
overlay configuration files, 93

P
PaaS (platform as a service), 182, 270
package manager, 82
Papanagiotou, Theofilos, 252
Parquet, 263
partitions (YuniKorn), 236
Patroni, 143
Patterson, Josh, 262
PD (Placement Driver), 172
PDBs (PodDisruptionBudgets), 76
PDs (persistent disks), 31, 68
Percolator transaction management, 173
Percona, 117
persistence, 10, 285
PetSet, 69
PGO (Postgres Operator), 129
physical servers, 3
Pienaarm, Willem, 255
PingCAP, 170, 173, 180
placement rules (YuniKorn), 237
PlanetScale Vitess Operator, 117-125
plug-ins, 105, 239
pluggable storage engines, 172
PMC (project management committee), 274
Pod affinity, 98
Pod anti-affinity, 98
PodGroup (Volcano), 238
podManagementPolicy, 72, 74
Pods

about, 26-33
lifecycle management, 68
management policies, 74
specification, 72
stable identity for, 67
StatefulSets, 71

point to point delivery method, 196
Polak. Adi, 265
post-processing, Transformer Service and, 255
Postgres, 10
PostgreSQL operators, 129, 267
Powell, Evan, “Container Attached Storage: A

Primer”, 45
PPT (people, process, and technology), 271-288
Predicate plug-in, 239
prediction, 250, 255
Predictor Service, 254
preprocessing, Transformer Service and, 255
preStop command, 72, 74
Priority plug-in, 239
PriorityClasses (Vitess Operator), 121
process

about, 283
basic maturity, 284
continually optimizing deployments, 286
deploying stateful workloads, 285
DevOps practices, 283

processing, 10
Programming Kubernetes (Hausenblas and

Schimanski), 78, 109, 131
project structure, Helm and, 101
Prometheus, 137, 143, 150-154
Prometheus API, 280
Prometheus Operator, 150
PromQL (Prometheus Query Language), 150
Proportion plug-in, 239
provisioner, 40
Proxy (Apache Pulsar), 204
publish/subscribe delivery method, 196
PV (PersistentVolumes), 28, 33
PVCs (PersistentVolumeClaims), 37, 68
PyTorch, 251

Q
Qdrant, 252
quality, optimizing, 287
queues, 236, 238

R
racks, 66
Raft consensus protocol, 173
Rancher, 46
Ray, 244
RDBMSs (relational database management sys‐

tems), 259

Index | 301

RDD (Resilient Distributed Dataset), 224
RDMA (Remote Direct Memory Access), 262
reading, as a node capability, 182
README file (Helm), 87
ReadOnlyMany access, 35
ReadWriteMany access, 35
ReadWriteOnce access, 35
real-time modeling, with KServe, 252-255
reclaimPolicy, 35, 40
Recreate, 58
Red Hat, 164
Redis Operator, 130
Redshift, 256
Rehman, Irfan Ur, 163
release (Helm), 84
Released status value, 36
reliability, Apache Flink and, 214
repairs, 154, 183
replicas, 72, 115, 116
ReplicaScheduler, 163
ReplicaSets, 54
ReplicatedSecret, 162
replication controller, 140
resharding, 125
resources

allocation of, 202
custom, 110-112
efficient use of, 222
isolating using Namespaces, 85
making changes to, 108
multicluster coordination requirements, 160
reading current state of, 108
updating status of, 109

REST API, 148
restoring data, with Cassandra Medusa, 158
reuse, Helm and, 100
RocksDB, 171
role, of streaming in Kubernetes, 199-202
RoleBinding (Vitess Operator), 120
Roles (Vitess Operator), 120
rollback update, 59
RollingUpdate, 59, 75
rollout, 59
Rook, 47
routing layer, 148
RPC (remote procedure call), 262

S
S3 (Simple Storage Service), 25

SaaS (software as a service), 182
sample controller, 78
Sanda, John, 100, 101, 163
SC (StorageClasses), 9, 39-41, 53, 83
scalability

about, 59
as a feature of Cass Operator, 147
of cloud native applications, 4
through multidimensional architectures,

191
scheduler, 105
scheduling complexity, 121
scheduling constraints, 99
scheduling plug-ins, 105
Schimanski, Stefan, Programming Kubernetes,

78, 109, 131
scikit-learn, 251
Secret volumes, 29
Secrets, Helm and, 90
security, default, 285
seed nodes, as a feature of Cass Operator, 147
Seldon, 251
self-healing, of cloud native applications, 5
ServiceAccounts, Helm and, 90
ServiceMonitor, 154
Services

about, 60
deploying, 280-282
exposing StatefulSet Pods via, 71
in Helm, 86

Session Mode (Apache Flink), 215
shard, in Vitess Operator, 115
sharded keyspace, 115
shuffle sharding, 187
sidecar containers, 26, 146
SIG Apps (Special Interest Group for Applica‐

tions), 76
Sigireddi, Deepthi, 125
SIMD (single instruction, multiple data) vecto‐

rization, 263
Skaffold tool, 94
SLA (service level agreement) plug-in, 240
slow storage, 49
SOA (service oriented architecture), 148
sovereign clouds, 271
Spanner paper, 170, 180
Spark (see Apache Spark)
Spark Driver, 227
Spark Executor, 226, 227

302 | Index

spark-submit command, 226
Spotify, 155
SQL (Standard Query Language), 169
SREs (site reliability engineers), 12, 272
Srinivas, Raghavan, “Multi-Region Cassandra

on EKS with K8ssandra and Kubefed” blog
post, 160

SSL (Secure Socket Layer), 207
Stack Overflow, 274
StackGres, 143
stacks, AI/ML (artificial intelligence/machine

learning), 250
Stargate, 137, 140, 147-150
“The State of State in Kubernetes”, 43
state, managing in Docker, 21
stateful services, 2
stateful workloads, deploying, 285
“StatefulSets: Run and Scale Stateful Applica‐

tions Easily in Kubernetes”, 75
Statefulness, 67
StatefulSets

about, 67
defining, 70
in Helm, 86
lifecycle management, 74
metadata, 71
past, present, and future, 76
Pods, 71

stateless services, 2
stateless workloads, moving, 284
static provisioning, 39
storage (see data storage)
storage layer, 148
stream analytics, 199, 221
Stream Processing with Apache Flink (Hueske

and Kalavri), 217
streaming

about, 195
analytics with Apache Flink, 212-217
as a component of cloud native data, 10
bounded, 213
data engineering and, 200
data on Kubernetes, 195-217
delivery guarantees, 197
deploying Apache Pulsar using Helm, 211
feature scope, 198
fundamentals of, 200
preparing environment for, 205
role of in Kubernetes, 199-202

securing communication by default with
cert-manager, 207-211

stateful workloads and, 285
types of delivery, 196
unbounded, 213
with Apache Pulsar, 202-212

Submariner, 164
Sun Microsystems, 14
Szulik, Maziej, 76

T
TAGs (Technical Advisory Groups), 273
taints and tolerations, 79, 99
Task-topology plug-in, 239
TaskManager, 212, 214
TDM (time-division multiplexing) plug-in, 240
technology

about, 276
architectures for cloud native data, 277-280
deploying services, 280-282
selecting cloud native data projects, 276

Tei, Wei, “Kubebuilder vs Operator SDK” blog
post, 131

template, 72
templates directory (Helm), 88
TensorFlow, 240, 251
Terraform, 99
Tezuysal, Alkin, “Vitess Operator for Kuber‐

netes” blog post, 124
third-party storage plug-ins, 24
“3 Reasons to Bring Stateful Applications to

Kubernetes” (Kurktchiev), 51
TiDB

about, 169
architecture, 170-173
creating TidbCluster, 176-181
deploying in Kubernetes, 173-181
hybrid data access at scale with, 169-181
installing CRDs, 174
installing Operator, 175

TiDB Operator, 173, 175
TiDB Scheduler, 176
TidbCluster, creating, 176-181
TiFlash, 172
TiKV, 171
TiPrometheus, 172
TiSpark, 172
TLS (Transport Layer Security), 207
Tmpfs mounts, 23

Index | 303

TOC (Technical Oversight Committee), 273
token, 66
topology management, as a feature of Cass

Operator, 147
Topology Service, 117
traditional databases, 182
training, 249
Transformer Service, 254

U
UID (unprivileged unique identifier), 229
unbounded streaming, 213
uninstalling Helm charts, 94
unsharded keyspace, 115
updateStrategy, 72, 75
updating Helm charts, 93

V
Vald, 252
values.yaml file (Helm), 87
van Leeuwen, Josh, 209
Vasquez, Rick, 11
vcctl tool, 240
Vearch, 252
vector, 249
versioned object storage, with lakeFS, 264-267
VIndex, 115
virtual machines, 3
Vitess Operator

about, 110, 114
building, 125
creating VitessCluster, 121-125
installing, 118
managing MySQL using, 114-127
PriorityClasses, 121
RoleBinding, 120
Roles, 120

“Vitess Operator for Kubernetes” blog post
(Tezuysal), 124

VitessCluster, creating, 121-125
Volcano, 237-240
volume drivers, 24
volumeBindingMode, 40, 53
volumeClaimTemplates, 73

volumeMode, 35
volumeMount, 73
volumes

about, 22, 26-33
additional providers, 31
choosing access modes for, 35
cloud, 30
ConfigMap, 29
configuration, 29
differences in options for, 36
downward API, 30
ephemeral, 28
hostPath, 30
Secret, 29

VPC (virtual private cloud), 99, 160
VSchema (Vitess Schema), 115
VSS (vector similarity search), with Milvus,

258-260
vtctlclient, 117, 125
vtctld, 117
VTGate (Vitess gateway), 116
VTTablet (Vitess tablet), 116

W
Wampler, Dean, 241
watch events, 108
Weaviate, 252
“When to Use, and When to Avoid, the Opera‐

tor Pattern” blog post (Branscombe), 130
Wood, Joshua, Kubernetes Operators, 131
Worker Nodes, 26, 30, 43, 66, 79, 83, 97, 106,

226
writing, as a node capability, 182

X
X.509 certificates, 207
XGBoost, 251

Y
YOLO (you only look once), 259

Z
Zalando Postgres Operator, 129

304 | Index

About the Authors
Jeff Carpenter has worked as a software engineer and architect in multiple industries
and as a developer advocate helping engineers succeed with Apache Cassandra. He’s
involved in multiple open source projects in the Cassandra and Kubernetes ecosys‐
tems including Stargate and K8ssandra. Jeff is coauthor of Cassandra: The Definitive
Guide.

Patrick McFadin has been a distributed systems hacker since he first plugged a
modem into his Atari computer. Looking for adventure, he joined the US Navy,
working on the Naval Tactical Data System (NTDS), which cemented his love of dis‐
tributed systems. He then spent the 1990s working on infrastructure as the internet
started to take off and barely survived the ensuing dot-com crash. Along the way,
Patrick picked up a computer engineering degree from Cal Poly, San Luis Obispo,
and has been focusing on high-scale internet infrastructure ever since. His latest
obsession is distributed data systems, and he has been a steady contributor to the
Apache Cassandra project since 2011.

Colophon
The animal on the cover of Managing Cloud Native Data on Kubernetes is the Indian
golden oriole (Oriolus kundoo), a species of oriole found on the Indian subcontinent
and in Central Asia. They belong to the order of Old World perching birds, which are
not closely related to New World orioles.

Male Indian golden orioles are bright yellow, except for a black patch on the wings,
black tail feathers, and a black eye stripe that gives them a masked appearance.
Females are a duller shade of yellow-green, with brownish-green wings. Both males
and females have red irises and pink bills.

Both parents participate in nest building and caring for young. After an incubation
period of 16 to 17 days, the young hatch and are fledged in another 16 days.

The oriole has a wide range of habitats, including forests, mangroves, open country,
parks, and gardens. Their diet primarily consists of fruit and insects.

The conservation status of the Indian golden oriole is Least Concern. Many of the
animals on O’Reilly covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

https://stargate.io
https://k8ssandra.io
https://learning.oreilly.com/library/view/cassandra-the-definitive/9781492097136
https://learning.oreilly.com/library/view/cassandra-the-definitive/9781492097136

	Cover
	Portworx
	Copyright
	Table of Contents
	Foreword
	Preface
	Why We Wrote This Book
	Who Is This Book For?
	How to Read This Book
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Cloud Native Data Infrastructure: Persistence, Streaming, and Batch Analytics
	Infrastructure Types
	What Is Cloud Native Data?
	More Infrastructure, More Problems
	Kubernetes Leading the Way
	Managing Compute on Kubernetes
	Managing Network on Kubernetes
	Managing Storage on Kubernetes

	Cloud Native Data Components
	Looking Forward
	Getting Ready for the Revolution
	Adopt an SRE Mindset
	Embrace Distributed Computing
	Principles of Cloud Native Data Infrastructure

	Summary

	Chapter 2. Managing Data Storage on Kubernetes
	Docker, Containers, and State
	Managing State in Docker
	Bind Mounts
	Volumes
	Tmpfs Mounts
	Volume Drivers

	Kubernetes Resources for Data Storage
	Pods and Volumes
	PersistentVolumes
	PersistentVolumeClaims
	StorageClasses

	Kubernetes Storage Architecture
	Flexvolume
	Container Storage Interface
	Container Attached Storage
	Container Object Storage Interface

	Summary

	Chapter 3. Databases on Kubernetes the Hard Way
	The Hard Way
	Prerequisites for Running Data Infrastructure on Kubernetes
	Running MySQL on Kubernetes
	ReplicaSets
	Deployments
	Services
	Accessing MySQL

	Running Apache Cassandra on Kubernetes
	StatefulSets
	Accessing Cassandra

	Summary

	Chapter 4. Automating Database Deployment on Kubernetes with Helm
	Deploying Applications with Helm Charts
	Using Helm to Deploy MySQL
	How Helm Works
	Labels
	ServiceAccounts
	Secrets
	ConfigMaps
	Updating Helm Charts
	Uninstalling Helm Charts

	Using Helm to Deploy Apache Cassandra
	Affinity and Anti-Affinity

	Helm, CI/CD, and Operations
	Summary

	Chapter 5. Automating Database Management on Kubernetes with Operators
	Extending the Kubernetes Control Plane
	Extending Kubernetes Clients
	Extending Kubernetes Control Plane Components
	Extending Kubernetes Worker Node Components

	The Operator Pattern
	Controllers
	Custom Resources
	Operators

	Managing MySQL in Kubernetes Using the Vitess Operator
	Vitess Overview
	PlanetScale Vitess Operator

	A Growing Ecosystem of Operators
	Choosing Operators
	Building Operators

	Summary

	Chapter 6. Integrating Data Infrastructure in a Kubernetes Stack
	K8ssandra: Production-Ready Cassandra on Kubernetes
	K8ssandra Architecture
	Installing the K8ssandra Operator
	Creating a K8ssandraCluster

	Managing Cassandra in Kubernetes with Cass Operator
	Enabling Developer Productivity with Stargate APIs
	Unified Monitoring Infrastructure with Prometheus and Grafana
	Performing Repairs with Cassandra Reaper
	Backing Up and Restoring Data with Cassandra Medusa
	Creating a Backup
	Restoring from Backup

	Deploying Multicluster Applications in Kubernetes
	Summary

	Chapter 7. The Kubernetes Native Database
	Why a Kubernetes Native Approach Is Needed
	Hybrid Data Access at Scale with TiDB
	TiDB Architecture
	Deploying TiDB in Kubernetes

	Serverless Cassandra with DataStax Astra DB
	What to Look for in a Kubernetes Native Database
	Basic Requirements
	The Future of Kubernetes Native

	Summary

	Chapter 8. Streaming Data on Kubernetes
	Introduction to Streaming
	Types of Delivery
	Delivery Guarantees
	Feature Scope

	The Role of Streaming in Kubernetes
	Streaming on Kubernetes with Apache Pulsar
	Preparing Your Environment
	Securing Communications by Default with cert-manager
	Using Helm to Deploy Apache Pulsar

	Stream Analytics with Apache Flink
	Deploying Apache Flink on Kubernetes

	Summary

	Chapter 9. Data Analytics on Kubernetes
	Introduction to Analytics
	Deploying Analytic Workloads in Kubernetes
	Introduction to Apache Spark
	Deploying Apache Spark in Kubernetes
	Build Your Custom Container
	Submit and Run Your Application

	Kubernetes Operator for Apache Spark
	Alternative Schedulers for Kubernetes
	Apache YuniKorn
	Volcano

	Analytic Engines for Kubernetes
	Dask
	Ray

	Summary

	Chapter 10. Machine Learning and Other Emerging Use Cases
	The Cloud Native AI/ML Stack
	AI/ML Definitions
	Defining an AI/ML Stack
	Real-Time Model Serving with KServe
	Full Lifecycle Feature Management with Feast
	Vector Similarity Search with Milvus

	Efficient Data Movement with Apache Arrow
	Versioned Object Storage with lakeFS
	Summary

	Chapter 11. Migrating Data Workloads to Kubernetes
	The Vision: Application-Aware Platforms
	Charting Your Path to Success
	People
	Technology
	Process

	The Future of Cloud Native Data
	Summary

	Index
	About the Authors
	Colophon

