
Learn more at portworx.com

In the pre-Kubernetes, pre-container world, backup and recovery solutions were generally implemented at the 
virtual machine (VM) level. This system works for traditional applications, when an application runs on a single 
VM. But when applications are containerized and managed with an orchestrator like Kubernetes, this system 
falls apart. Effective disaster recovery for Kubernetes must be designed for containerized architectures and 
natively understand the way Kubernetes functions.

Introduction
Traditional, VM-based backup and recovery solutions 
use snapshots that collect both too much and not 
enough information to be useful for a containerized 
application. This may seem paradoxical, but it is not. 
We say it’s too much, because any particular VM will 
contain data from several applications. If you are trying 
to back up App 1 by taking a snapshot of a VM, you’ll 
also get data from other applications. At the same time, 
it’s not enough: App 1 will likely store data on other 
VMs as well, and that data would not be captured by a 
snapshot of a single VM. 

Modern applications with distributed architectures need disaster recovery solutions that are able to locate 
all the relevant data and configuration information for a particular app and organize it in a way that allows the 
application to recover with zero recovery point objective (RPO) and near-zero recovery time objective (RTO). 

An effective disaster recovery solution for Kubernetes needs to be: 

• Container Granular

• Kubernetes Namespace Aware

• Application Consistent

The Five Traits of Effective 
Disaster Recovery for Kubernetes
Disaster recovery is an essential capability for most 
enterprise applications. 

EXECUTIVE BRIEF

• Able to Backup Data and Configurations

• Multicloud and Hybrid Cloud Optimized

node-3

node-1

node-2

http://portworx.com


2Learn more at portworx.com

Unless a disaster recovery solution meets all five criteria, it won’t be enough to ensure data-rich applications 
running on Kubernetes are able to meet service level agreements (SLAs) or legal requirements related to 
disaster recovery. 

Let’s discuss why each of these is important. 

 

Container-Granular 
A container-granular disaster recovery solution means that instead of backing up an entire VM or server, users 
can back up specific pods or groups of pods. This allows users to zero in on the application that needs to be 
backed up and snapshot only the containers that belong to that application.

Let’s say you have a three-node Kubernetes cluster 
with one three-node Cassandra ring and three one-
node PostgreSQL databases, spread over three 
virtual machines. With a traditional disaster recovery 
solution, the only way to back up the cluster would be 
to back up the three virtual machines. This would lead 
to increased complications from extract, transform 
and load procedures, increased storage costs and 
increased RTO. The only way to back up enough data 
would be to back up way more than necessary. 

With a container-granular approach, it’s possible to 
back up just one single PostgreSQL database, or 
just the three-node Cassandra ring, on all three VMs, 
without picking up anything else.

Kubernetes Namespace Aware
Traditional backup and recovery solutions do not speak Kubernetes’ language and are not designed to work in a 
way that makes sense in the Kubernetes ecosystem. 

Namespaces in Kubernetes generally run several 
related applications. A frequent pattern in 
enterprise Kubernetes deployments is to have, for 
example, all of a company divisions’ applications 
running on a single namespace. Given that use 
case, it’s often necessary to back up all of the 
applications in a Kubernetes namespace together. 

node-3

node-1

node-2

Target apps, not machines, with snapshots

Namespace 1

Namespace 2 

x86 x86x86 x86

http://portworx.com


3Learn more at portworx.com

Like individual applications, however, namespaces are distributed over many virtual machines. Each virtual 
machine might also have pods from several different namespaces. Without a namespace-aware disaster 
recovery solution, full backups would require backing up and storing far more data than necessary. Even with 
this over-blown backup strategy, it would be difficult to restore the entire namespace in case of failure, leading to 
high RTO.

Application Consistent
Even if you wanted to solve the problems outlined above by simply backing up all the VMs in the system, it 
would be difficult to avoid data corruption with a traditional disaster recovery solution. To successfully back up 
a distributed application, without risk of data corruption, all pods in an application need to be locked while the 
snapshot is in progress. VM-based snapshots and serial snapshots can’t achieve this, because they can’t lock an 
entire application, spread over several VMs, and execute an application-consistent snapshot. 

Successful snapshots that minimize the risk for data corruption have to be application consistent and designed 

for distributed architectures. This means the ability to lock all pods that belong to an application and to execute 
the snapshot simultaneously.

Data and Configuration Backups
The goal of a disaster recovery system is not just preventing data 
loss—it is also to keep keep RTO low. You need the application up and 
running again as soon as possible. 

This requires backing up both application data and configuration 
information. If configuration information isn’t included with the backup, 
the application will have to be rebuilt in place—a slow, manual and 
potentially error-prone process. If only configurations are saved, 
however, you could lose all your data. 

A true enterprise-class disaster recovery system for Kubernetes will 
include both data and configuration backups, allowing you to redeploy 
the application after a failure in one or two commands. 

A. Flush memory

B. Status complete and return to CRD

C. Freeze filesystems and snapshot

D. Unfreeze filesystems

A. Flush & Lock tables in background

B. Status complete and return to CRD

C. Freeze filesystems and snapshot

D. Unfreeze filesystems

E. Release table Lock

VS

+

App config
(PV, PVCs, 
Controllers...)

Container 
image version

Volume Other 
solutions

captures the 
entire app

http://portworx.com


4Learn more at portworx.com

Optimized for Multicloud and Hybrid Cloud
The vast majority of enterprises have applications 
running in at least two environments. This could 
mean multiple on-premises data centers or 
multiple Amazon Web Services (AWS) regions. 
In the context of disaster recovery, it’s common 
to have one data center be the primary site and 
to have a second backup site. There are also, 
however, many companies that use a combination 
of the public clouds and on-premises data centers 
to run applications and to meet their business 
requirements. In most cases, businesses choose 
the best architecture based on their RPO and RTO 
requirements. 

It’s crucial for disaster recovery solutions to work with these architectures to support varying levels of RPO and 
RTO. An effective disaster recovery solution should be able to provide both synchronous and asynchronous data 
replication, depending on the latency between the active and the backup cluster. 

Synchronous replication, which allows an RTO and RPO of zero, is possible 
when the round-trip latency between active and backup sites is generally 
under 10 milliseconds—often, when the active and backup clusters are 
running in data centers in the same metropolitan area. 

In some cases, businesses need to maintain geographic distance between 
the active and backup sites. In that case, RTO can still be at or near zero, but 
the increased latency means that data can’t be synchronously replicated 
without massive performance problems. If an RPO of fifteen minutes or an 
hour is acceptable for the particular application, however, this should be one 
of the disaster recovery options. 

An enterprise-class disaster recovery solution for Kubernetes should give users the option of either synchronous 
or asynchronous data replication that works with a multi-cloud or hybrid cloud architecture. This gives users the 
ability to select the disaster recover option that works for their data center architecture as well as their business 
requirements. 

57% 
demand RPO < 1 hr

48% 
demand RTO < 1 hr

For mission-critical apps

http://portworx.com


5Learn more at portworx.com

Conclusion
As enterprises move mission-critical applications to Kubernetes, it’s essential that they rethink disaster recovery. 
It’s entirely possible to meet SLAs related to disaster recovery while running an application on Kubernetes, but 
it requires taking an approach that is designed for Kubernetes and natively understands how Kubernetes works. 
Traditional, VM-based disaster recovery solutions don’t translate to a cloud-first, containerized application 
and can’t provide the disaster recovery protection that enterprises need for their mission-critical, data-rich 
applications. 

The Portworx Enterprise Storage Platform was purpose-built for containers and Kubernetes. It makes zero-RPO 
and near-zero RTO disaster recovery possible for applications running on Kubernetes, with container-granular, 
namespace-aware, application consistent disaster recovery. Failovers can be completely automated, keeping 
RTO as low as possible. 

Curious how the Portworx Enterprise Storage Platform can provide enterprise-class disaster recovery that 
understands how Kubernetes works? Schedule a demo today. 

http://portworx.com

