
The Expert’s Guide
to Running Containers
in Production

INTRODUCTION

The benefits of container-based microservices��� 3

Agility�� 3

Resilience��� 5

The challenge of stateful containers�� 5

Persistence�� 5

High availability��� 5

Security�� 6

Scheduler-based automation�� 6

Any database, any infrastructure�� 6

WORKING WITH STATEFUL CONTAINERS USING THE LEADING CONTAINER MANAGERS�

Docker ��7
Data volumes��7

Data volume plugins��� 8

Docker Swarm��� 9

Kubernetes �� 9

Volumes��� 9

Persistent volumes��� 9

Persistent volume claims��� 9

Storage class��10

Stateful sets��10

Kubernetes volume plugins�� 11

Mesos��12

Using Local Volumes���12

External volumes���12

DATA ARCHITECTURES FOR CONTAINERIZED APPLICATIONS�

Connector-based systems���15

Low density of stateful containers per host��15

Slow block device mounts���15

Key-value based systems���16

Container data services platform���16

COMMON USE CASES FOR STATEFUL CONTAINERS�

Reliably deploy and operate containerized databases, queues, and key-value stores�� 17

Speeding up your CI/CD pipeline��18

Containerize your data processing workloads���19

Containerize your CMS, simplify management���20

SOURCES...20

APPENDIX�

Storage drivers��21

BUILD TEST DEPLOY

Speeding up this cycle makes you more competitive

INTRODUCTION:

The benefits and
challenges
of containerized apps
Thanks to Docker, containers have exploded onto the
enterprise software scene like nothing else in the last decade.

Containers provide a process-runtime and application-packaging format,

delivering concrete benefits in terms of speed-to-launch, density, and

portability. But it is really the combination of containers and microservices that

yields the biggest benefits. These outsized benefits explain why enterprises,

often conservative when it comes to technologies that require large-scale

platform refactoring, are leading the charge to adopt containers, with well-

known companies such as GE and Capital One talking publicly about their move

to container-based architectures.

The benefits of container-based microservices

Container-based microservices provide two main benefits to enterprises:

improved agility and application resilience. Let’s look at each:

Agility

The big don’t eat the small anymore; the fast eat the slow. Every major industry

is in the process of being transformed by software-powered innovation. If

a team or company can speed up the build-test-deploy cycle more than its

competitors, it can capture a larger share of the market by responding better to

changing conditions.

User can still check balance and
pay bills even transfer funds if

microservice is unavailable

If the central database of a
monolithic application is down,

all services are unavailable

Transfer Funds

Check Balance

Pay Bills

Transfer Funds

Check Balance

Pay Bills

Online Banking Service

4

Container-based microservices improve agility by breaking an application into

multiple smaller parts that can be independently built, tested, and deployed

without affecting any other part of the application.

Container-based microservices stand in contrast to what are often called

“monolithic” applications. Often, in a monolithic application, improvement

to one part of the code requires changes to another. This “tight coupling” of

features into a single codebase leads to infrequent and high-risk software

releases. When new versions of software are released only quarterly or annually,

enterprises expose themselves to disruption by more nimble competitors.

The other way that container-based microservices improve agility is by putting

a premium on automation. If something can be automated, it can be done faster

and more frequently without increasing the risk of human error. It also leaves

the humans to concentrate on automating additional tasks that are currently

manual and error-prone.

Resilience

Container-based microservices are faster to build, test, and deploy, but are they

of higher quality? The evidence from enterprises would suggest yes.

The reason is that because microservices are “loosely coupled,” a failure in

one part of the system is less likely to affect another. For example, if an online

banking service built using microservices is having a problem with its ’transfer

funds’ function, a user can still check account balances or pay bills online

because each of the individual features is its own microservice, complete with

its own database. While the user might experience a degraded experience, the

service is still useful as a composition of the functioning parts.

Contrast this microservices-based resilience with a monolithic banking

application, where the inability to access a single Oracle database causes the

user to be unable to check account balances, transfer funds, or pay a bill.

30%20%10%0%

Data management

Persistent storage

Multi-cloud or cross-datacenter support

Networking

Scalability

Security

Reliability

Other

Logging

Recovery

UI

Source: Portworx Container Adoption Survey 2017

5

The challenge of stateful containers

The benefits of container-based microservices are clear. However, innovative

enterprises that have gone down the microservices path have run into

problems converting their databases, queues, and key-value stores to run

inside containers. In fact, a recent industry survey by Portworx indicates that

persistent storage was the number one barrier to production deployments of

containers, as seen by the question and responses below:

Persistence

The first problem with stateful containers is that native Docker doesn’t provide

a persistence layer that enables a containerized database to survive host

failure. You can mount a volume onto the host, which means if your container

crashes, your data survives because it exists outside of the container. However,

because the volume is host-bound, if you lose your host, you also lose your

data. Additionally, if your container is rescheduled to a new host, its data does

not move with it.

High availability

While HA has always been a requirement for certain databases, it is increasingly

becoming a requirement for all. It used to be common for Ops teams to issue

“Maintenance Notices” to their internal and external customers indicating that

a service would be unavailable for a time during a migration or update. While

In order to deploy containers, which challenge
has been the most difficult to overcome?

https://portworx.com/wp-content/uploads/2017/04/Portworx_Annual_Container_Adoption_Survey_2017_Report.pdf

Common failure modes:

Server

Disk

Network

Bug

Traffic spike

Load balancer

The list goes on...

6

disruptive when software was released quarterly or annually, these maintenance

windows are completely unacceptable in a world where applications are being

updated on a daily or weekly basis. As a result, databases must be available

even during updates, deployments, and a variety of host, network, and disk

failures, as well as during high-traffic events.

Traditional solutions for HA, however, are less applicable for modern container-

based microservices. Mitigating failure with custom hardware is expensive (not

to mention anti-DevOps), while application-layer replication can be slow and

can tank your performance—especially as the cluster rebuilds itself.

The problems of persistence cited above compound the issues related to

ensuring HA for stateful containers.

Security

Security is important for all parts of an application, but it is of particular

importance for stateful containers. That’s due to the sensitivity around data,

especially for regulated industries. Enterprises moving to stateful containers

need to explore two important areas: encryption and access controls.

For encryption, data in motion must be encrypted using SSL or other protocols,

and data at rest must be encrypted with a key that only the customer retains

access to.

Just as important, access controls must be in place to ensure that only

containers with sufficient privileges can access certain data volumes.

Scheduler-based automation

The next challenge for stateful containers is scheduler-based automation

of data services. While you could theoretically create a system to persist

and secure your data using custom hardware solutions or highly controlled

manual processes, these practices would offset the agility gains provided by

microservices.

To be agile, DevOps teams can’t wait days or weeks for storage to be

provisioned so they can deploy their application. They need stateful containers

to be as easy to deploy and manage as the stateless parts of their app. That

means provisioning and managing data via a container manager, also known

as a scheduler or orchestration framework. The problem is that most popular

schedulers vary in their support for stateful containers.

Any database, any infrastructure

Finally, not only must enterprise teams solves persistence, HA, security, and

data automation for one database running in one environment, but they must

also do it for many databases in many environments.

7

Gone are the days of running everything on an Oracle database managed by

a dedicated team of DBAs. Now, DevOps teams must consistently manage a

wide mix of SQL and NoSQL databases as well as other stateful services such

as Jenkins, Gitlab, or WordPress. Additionally, they need to be able to do it in

many different environments: AWS, Azure, Google, VMware, and bare metal.

WORKING WITH STATEFUL CONTAINERS USING THE
LEADING CONTAINER MANAGERS

The problems associated with persistence—HA, security, data automation,

and support for heterogeneous databases and infrastructure—are solvable.

The rest of this guide will explore how to address these issues while using the

most popular software platforms for running containers: Docker, Kubernetes,

and Mesosphere DC/OS.

Docker

Docker is the king of containers, and many of its key concepts carry through to

the other schedulers. So starting with Docker makes the most sense.

Data volumes

The most fundamental stateful container concept in Docker is the data volume,

which presents a formatted file system as a directory that can be mapped onto

any path inside a container. Reads and writes to these data volumes operate

on the host itself. The underlying file system will write to a block device, either

local storage or some type of shared storage such as Amazon EBS or Google

Persistence Disk.

In this command, a host directory /src/webapp is mounted into the

container at /webapp.

$ docker run -d -P --name web -v /src/webapp:/webapp

training/webapp python app.py

The most important feature of a data volume is that it persists beyond the life of

the container, thus creating the most basic persistence for that container—i.e.,

if it restarts, the data would still be there. However, host data volumes, meaning

volumes on the same host as a container, are not resilient to whole host or disk

failure. As a result, Docker introduced the concept of volume plugins as a way

to manage external host volumes and, in many cases, connect them to external

shared storage.

http://app.py

Thing plugged into

Volume plugin

One block device per container has slow performance
due to costly mount/unmount operations.

EBS EBS EBS

CONTAINER CONTAINER CONTAINER

Slicing one block device into many virtual
volumes provides instant volume provisioning.

CONTAINER CONTAINER CONTAINER

EBS

8

Data volume plugins

A data volume provides the container with an agnostic directory it can read and

write to—without having knowledge of the infrastructure required to provision

the underlying storage. It is the job of a data volume plugin to do the provisioning

and attach the underlying storage to the correct node, before the container

starts.

It is this decoupling that is particularly useful if you are running large numbers

of stateful containers across different environments.

Essentially, a Docker volume plugin acts as a control plane mechanism for the

data volume. Sometimes, this is referred to as storage orchestration.

Each volume plugin can take a different approach to what type of storage

it offers and, more importantly, how it orchestrates that storage in a busy

container scheduler environment.

For example: If running containers on a common cloud platform such as AWS,

we might choose to attach Elastic Block Storage (EBS) devices to our containers

using a volume plugin. One plugin might choose to attach a new EBS device for

each container, while another might pool each EBS device into a storage fabric

and offer a virtual slice to each container.

In the example above, your application performance is going to differ

dramatically in the two instances because mounting EBS volumes to EC2 hosts

is a notoriously slow process, while formatting a virtual volume on top of a block

device is nearly instantaneous.

The important point is that you need to understand what capabilities are

provided by your underlying storage system, not just what the capabilities are

provided by the volume plugin.

The horse and rider metaphor was originally used by Lew
Moorman to describe an API and the system it connects to,

but it works just as well for volume plugins and storage.

9

Another way to think about this is that before you pick a volume plugin, you

need to think about the operational characteristics that you want your Docker

storage to support, then pick a volume plugin that supports it.

Docker Swarm

Docker provides a container scheduler called Swarm that can be used to

automatically schedule containers in a cluster. When combined with a Docker

volume plugin, Docker Swarm can be used to provide persistence, HA, and

scheduler-based automation for stateful containers—subject to the caveats

above about the limitations of some Docker volume plugins.

Kubernetes

One of the most popular container schedulers is Kubernetes. While many of

the storage concepts are the same as for Swarm, Kubernetes goes beyond

the capabilities of Docker to provide more sophisticated volume management

primitives.

Volumes

As with Docker generally, on-disk files in a container are ephemeral. If your

database container crashes, you don’t want to lose your data so you don’t want

to store your data in a container.

Volumes in Kubernetes, as in Docker, provide some level of resilience against

data loss. In Kubernetes, a volume persists after a container crashes. However,

it doesn’t persist after your pod crashes; the life of the volume is the same as

the life of the pod. (In Kubernetes, a pod is the basic building block, consisting

of one or more containers, resources such as volumes, and configuration

options). If you need more persistence than is provided by a volume, you can

use the aptly named persistent volume, as described below.

Persistent volumes

A PersistentVolume or (PV) is a volume that will last longer than the lifecycle

of a single Kubernetes pod and represents a piece of networked storage in the

cluster. For example, if you are running your Kubernetes pods on AWS, you

could have a persistent volume backed by an EBS device. This PV is a resource

in the cluster just like a physical server is a cluster resource.

Persistent volume claims

To use a PV in Kubernetes, you need create a Persistent Volume Claim.

Remember, a PV is just a resource in the cluster. A persistent volume claim is a

request for those resources. In the diagram below, we see a PV claim for a 3 gig

read-write volume.

10

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: task-pv-claim

spec:

 accessModes:

- ReadWriteOnce

 resources:

 requests:

 storage: 3Gi

Storage class

Another useful feature of PVs in Kubernetes is storage class. Talking about

“storage” is like talking about “fruit.” What kind? Apples, bananas, mangos? In

Kubernetes, when you create a PV, you can specify a storage class, for instance

“fast” or “slow,” and those descriptors can be defined with parameters. In

this example, we have a “fast” storage class that means we run on a Google

Persistent Disk using SSD. These storage classes could define iOps, backup

policies, and more.

kind: StorageClass

apiVersion: storage.k8s.io/v1beta1

metadata:

 name: fast

provisioner: kubernetes.io/gce-pd

parameters:

 type: pd-ssd

Stateful sets

The last storage concept in Kubernetes we will examine is stateful sets. Stateful

sets are a new concept in Kubernetes that take PV and PVCs a step further. In

essence, they take management of stateful services from single node to multi-

node. They provide:

• Stable, unique network identifiers

• Stable, persistent storage

• Ordered, graceful deployment and scaling

• Ordered, graceful deletion and termination

In other words, stateful sets give you the semantics to manage a group of

stateful pods, such as a 3-node MySQL cluster with one master and two slaves,

as a whole. You could use PV and PV Claims to manage these three containers

individually, but chances are you want to manage your cluster as a cluster. For

http://storage.k8s.io
http://kubernetes.io/gce

11

instance, if you reschedule your MySQL cluster, you want your master to start

up first and be recognizable as the master. Stateful sets provide this capability

in the form of strict ordinal indexes that control that start-up ordering of pods

within the stateful set, among other features.

In this example of spinning up a stateful set, we have three pods in our cluster,

and the first one (mysql-0) is spun up and running before the second one, in

that strict order.

kubectl get pods -w -l app=db

NAME READY STATUS

mysql-0 0/1 Pending

mysql-0 0/1 Creating

mysql-0 1/1 Running

mysql-1 0/1 Pending

mysql-1 0/1 Creating

mysql-1 1/1 Running

mysql-2 0/1 Pending

mysql-2 0/1 Creating

mysql-2 1/1 Running

There is no equivalent of a stateful set primitive on Swarm or Mesos.

Kubernetes volume plugins

Like Docker, Kubernetes supports the idea of volume plugins. In Kubernetes,

plugins are referred to as “Types of Volumes” but the idea is the same: You can

use a third-party system to add additional support for persistence, HA, and

security to your data volumes above and beyond what is supported natively

within the scheduler. Also like Docker, you need to understand the capabilities

of your Kubernetes volume type before assuming that, for instance, you can use

PV claims to provide HA for your database using the awsElasticBlockStore

volume type. This volume type uses Amazon EBS, which takes at least 45

seconds to unmount and remount to a host when Kubernetes reschedules

a container between EC2 instances.If 45 seconds or more of downtime is

unacceptable for your database, you will need to look into other volume types.

Using our example from earlier, a volume plugin that pooled the underlying EBS

devices and synchronously replicated the data between hosts at block level

would not suffer from this problem because it would need to attach the EBS

device only once.

https://kubernetes.io/docs/concepts/storage/volumes/#types-of-volumes

12

Mesosphere DC/OS

Like Docker and Kubernetes, Mesosphere DC/OS provides a mechanism to

create a persistent volume from disk resources. When launching a task (the

basic building block in Mesos similar to a pod in Kubernetes or a container in

Docker), you can create a volume that exists outside the task’s sandbox and will

persist on the node even after the task dies or completes. When the task exits,

its resources such as persistent volumes can be offered back to the framework,

so that the same task can be launched again.

DC/OS offers two approaches to persistent storage: local and external

persistent volumes. At a high-level, local persistent volumes involve using the

storage available on a host that tasks run on, while external persistent volumes

involve network-attached storage like Amazon EBS or an on-premises SAN.

Both of these approaches have important limitations documented on the

Mesosphere DC/OS website and outlined below. For full details see DC/OS

docs on local and external volumes:

Caveats when using local persistent volumes

Tasks are pinned to a single host

Once a task has been run on a server on a local volume, it is “pinned” to that

server and can’t be rescheduled to run onto a different server, even if the initial

host becomes unavailable.

Resource requirements are fixed at start time

Just as a task run on a host with a local volume is forced to always run on that

host, the initial resource requirements of a task using a local volume are fixed.

That means that if a database is running out of space, the administrator can’t

resize the volume without stopping the application, taking down the task,

spinning up a new host with a larger disk, transferring the data to the new host,

and bringing the task back up..

 External management for replication and backups

Because a given task is pinned to a host and if that hosts dies, all data related to

that task is lost, teams must think about replication and backups to protect any

mission-critical infrastructure.

Caveats when using external volumes

One of the ways to get external volume support today is through connector

plugins to legacy storage products. But this connector product has several

pitfalls as documented below and on DC/OS website.

https://dcos.io/docs/1.9/storage/persistent-volume/
https://dcos.io/docs/1.9/storage/external-storage/

13

Only one task per volume

External volumes accessed via a connector plugin can only be used by one task

at a time. This prevents applications from accessing their data from multiple

hosts. The connector products prevent customers from realizing the true agility,

elasticity and scale that could be unleashed by containerizing the application.

Cross-AZ limitations

Since connector plugins do not provide storage, they may not be able to ensure

cross-AZ availability and security of container data volumes as cloud-based

block devices and some on-prem SANs are not available across AZs or data

centers.

Inconsistent launch times

Similarly, since connectors are not full fledged storage services stacks

themselves, they are highly dependent on the underlying capabilities of the

storage system. For EBS or Google Persistent Disk, simply starting a task with

an volume mounted can take nearly a minute or more. Similar launch times can

affect on-prem SANs.

Low density of stateful containers per host

There are some other limitations of connector-based external volumes that

are important to understand. First, while thousands of containers can run per

host, there are limitations to how many block devices can mount to a host due

to the networking limitations in the Linux kernel itself. For example, when using

a connector plugin, a maximum of 40 EBS volumes per EC2 instance can be

mounted before risking boot failure. So while simple, the model of one EBS

volume per container volume can severely limit the density of containers that

can be achieved per host. If reducing infrastructure costs or increasing density

is a desired attribute for an application, a connector-based approach might not

be a good fit.

Slow block device mounts

Additionally, the mount operation of a physical block device to a container

host can be a slow operation, taking up to 2 minutes, and frequently failing

altogether, requiring a host reboot. As a result of the time it takes to unmount

and remount a block device, failover operations, such as those supported by

connector plugins, do not function well as a HA mechanism.

Volumes at run time can’t be dynamically provisioned

Connector plugins do not support in-line volume specification which allows

DC/OS platform users to launch containers that use storage without having to

log a ticket and wait for someone to manually create a volume for their app.

Can’t scale up stateful apps

 One of the biggest benefits of a container platform is the ability to easily add more

Connector Based

CONTAINER

CONNECTOR

NAS SAN

Supports mapping
to OS volumes.

Key Value Based

CONTAINER CONTAINER

KEY VALUE

FILESYSTEM FILESYSTEM

Supports file syncing.

Container Data Services

CONTAINER CONTAINER
DATA SERVICE

Supports distributed
block, file, object.

ANY CLOUDANY SERVER

DISTRIBUTED BLOCK

14

instances to a running application so we can smoothly keep up with incoming

user requests. This is known as app scaling and the concept is supported from

with the DC/OC UI. An operator can simply increase the number of instances

from 1 to 2, for example. If the app was using a volume exposed via a connector,

however, that request would be blocked by the platform since the use of a

connector volume limits the number of tasks an app can have to 1. An operator

can “scale down” to 0 to effectively pause the app and then scale back up to 1

but can not go past that when using a connector.

Being able to scale apps is important, for example, for running Consul on

Marathon. Other examples include things like DiskCache and EHCache which

would also like to be able to scale volumes with compute when running on

Marathon.

To run stateful services successfully on Mesosphere DC/OS, it is important

to choose a data services platform such as Portworx that overcomes these

issues.

DATA ARCHITECTURES FOR CONTAINERIZED
APPLICATIONS

With an understanding of the storage primitives available to containerized

applications, let’s turn now to how you can architect your application to take

advantage of these primitives.

Three types of stateful architectures have emerged for distributed applications,

and while they all leverage a plugin model (Docker volume plugin for Docker

Swarm and Mesos, or native Kubernetes plugins for Kubernetes), they are

quite different in terms of their performance, due to important architectural

differences. Ultimately, your choice of the storage technology matters a lot

and depends on your applications and usage, e.g., if you are in production or

development. Let’s look at each architecture in turn.

15

Connector-based systems

The most common type of volume management that has emerged is the

connector-based system. Examples include Flocker from ClusterHQ, EMC

RexRay, and a growing number of native Docker storage drivers for storage

systems such as Amazon EBS. These volume plugins take physical or software-

defined volumes and map them 1:1 into a container.

If you remember the rider and horse example above, the rider is the connector,

for example RexRay, and the horse is the storage system that it plugs into,

perhaps EMC Isilon or Amazon EBS. They are called connector-based systems

because they connect storage to containers; these connectors don’t provide

the storage itself.

Advantages of connector-based systems:

•	 Allow you to use your current storage system for container storage

•	 Are generally free to use

•	 Relatively easy setup

Connector-based systems also have some disadvantages, specifically related

to the fact that they provide a persistence layer for containers by plugging

into an existing storage solution. As a result, they pass through the storage

characteristics of the underlying system to the containerized application.

For example, the EBS Docker plugin makes it trivially easy to mount an EBS

volume to a Docker container using Kubernetes, Mesos, or Swarm. However,

some issues can emerge as a result. We will use AWS EBS as an example of

these general, storage-system-related problems. You should look at your own

storage system to see if these specific problems apply.

Low density of stateful containers per host

First, while you can run thousands of containers per host, you can mount a

maximum of 40 EBS volumes per EC2 instance before risking boot failure. So

while simple, the model of one EBS volume per container volume can severely

limit the density of containers you can achieve per host. If reducing infrastructure

costs or increasing density is a desired attribute of your application, a connector-

based approach might not be a good fit.

Slow block device mounts

Secondly, the mount operation of a physical block device to a container host

can be a slow operation, taking 45 seconds or longer, and frequently failing

altogether, requiring a host reboot. As a result of the time it takes to unmount

and remount a block device, failover operations, such as those supported

by Kubernetes using persistent volume claims, do not function well as an HA

mechanism.

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/volume_limits.html
https://aws.amazon.com/premiumsupport/knowledge-center/ebs-stuck-attaching/

16

Plugins such as RexRay, Flocker, EBS, and ScaleIO all suffer from these storage-

system-related limitations. It is not that the plugin itself is faulty. The plugins are

just passing along the capabilities of the underlying storage.

Key-value based systems

Another type of container storage has emerged based on key-value storage.

Examples include Infinit, acquired by Docker, and the recently deprecated

Torus by CoreOS.

These new storage systems, many so new they are still in alpha, are good for file

streaming and non-critical workloads bound by web access latencies, but due

to the architectural choice of building on top of a key-value store, are not suitable

for transactional, low-latency, or data-consistency-dependant applications.

There are two main types storage systems that use a key-value-based backend

storage. The first store the actual volume data in the key-value backend. An

example includes Infinit from Docker. This is similar to creating a filesystem or a

storage system based on an object store in the back. The problem is that object

stores like S3 and key-value stores like etcd are meant for write-once, read-

many workloads. This means that with regular primary filesystem workloads,

the key-value backend will very quickly deteriorate and end up with major

garbage collection issues. They are also not designed to be highly performant

for transactional and low latency workloads, which means the applications like

databases cannot run on them.

Other types of storage systems attempt to encode volume metadata (either a

file’s location or a block’s logical location) into the key-value store. An example

of this includes the recently deprecated Torus from CoreOS. This implies that

the key-value store is in the data path for every single IO operation in order to

lookup the data’s physical location. This creates a single point of failure and

a bottleneck. Again, transactional workloads like databases cannot rely on a

system like this.

Container data services platform

As we’ve seen above, connector-based systems have the advantage of easily

connecting storage to containers, but they can suffer from the drawbacks

of their underlying storage systems, which are not optimized for container

workloads. Key-value based systems, on the other hand, implement a storage

system that works great for some workloads such as file streaming, but that is

not optimized for more common database workloads.

Container data services platforms are storage systems that combine a

native container integration of a connector-based system with a cloud-native

17

container-optimized storage system. Portworx is an example of a container

data services platform.

Portworx provides cloud-native and container-granular data service solutions

built on top of an enterprise-grade distributed block storage systems.

Portworx supports workloads such as databases, queues, and other file-

based applications, with cloud-native architectures in mind. The container

storage solution is built with the founding principles of ease of use, DevOps-led

programmability, and integration with any container scheduler. Built by a team

of storage engineers with DevOps experience, Portworx has data correctness,

availability, integrity, and performance at its core, without sacrificing usability.

COMMON USE CASES FOR STATEFUL CONTAINERS

With four of the top 10 Docker images on hub.docker.com being stateful (Redis,

MySQL, MongoDB, ElasticSearch), it’s clear that stateful containers are being

used today in large numbers. The following section describes some of the most

common use cases.

Reliably deploy and operate containerized databases,
queues, and key-value stores

The most common use of stateful containers today is simply the reliable,

automated deployment and operation of containerized databases, queues,

and key-value stores. Any non-trivial application uses some type of database,

queue, or key-value store to manage state, so this is an obvious place for teams

running containerized apps to find themselves.

Advantages of running databases, queues, and key-value stores in containers:

•	 Higher density than can be achieved using VMs

•	 Near bare-metal performance compared to virtualization

•	 Process isolation

However, when it comes to running these data services in containers, problems

can arise because containers and popular container schedulers such as

Kubernetes, Mesos, and Swarm weren’t designed to handle the problems

associated with databases.

Problems with containerized databases today:

•	 When a container dies, it can lose data if persistence is not set up correctly

•	 Popular schedulers not designed for stateful services provide only limited

functionality

•	 App-level replication requires domain-specific knowledge for each database

When picking the data architecture for your stateful application, consider these

questions:

http://hub.docker.com

Jenkins w/ snapshots
Jenkins only

3.5 hrs

7 min

Build time savings using
volume snapshots

18

•	 Do you need the performance of a hyper-converged architecture, where

your containers and your data run on the same host?

•	 Do you need your stateful container to be HA?

•	 How will you do backups?

Speeding up your CI/CD pipeline

Often containerization is part of a larger microservices and DevOps

transformation, and CI/CD is a key component of both. Effective CI/CD requires

that you can quickly, and reliably, recreate your production environment for

testing. Moreover, you must be able to reset your environment after each

test run, or your results will be subject to failures caused by minor changes to

configuration state between test runs.

Problems with CI/CD today:

•	 Pulling images to create new build environments is

time-consuming

•	 Horizontal scaling is slow because an entire Jenkins

/home or similar directory must be pulled

•	 Incremental builds speed up testing but are

error-prone

Containerized CI systems are a good way to overcome

these challenges, because container volumes can be

snapshotted and used as a golden image for tests.

Horizontally scale your CI/CD cluster without the wait

The Jenkins /home directory or equivalent in TravisCI, Bamboo, and other

popular CI/CD systems includes all the images and artifacts you need to run

your tests. Once it’s been built the first time from your container registry and

version control system, you can snapshot it and use those snapshots as the

basis for unlimited Jenkins slaves. With a container data services solution such

as Portworx, snapshots are available to the cluster globally. So no matter where

your Jenkins job is scheduled, your tests can begin right away, without any wait.

Speed up incremental builds

Because pulling all the images and artifacts needed for a test run is time

consuming, it is tempting to use the same environment for multiple test runs.

The problem is that database state or configuration can often change in the

course of a test run, causing subsequent runs to fail—not due to real errors

in your code, but because of minor differences in your configuration. Sorting

out the cause of these errors is time consuming, so many revert to pulling

Jenkins/home or equivalent fresh each time. However, once you’ve built

19

Jenkins /home, you can snapshot it and use the snapshot as a golden image for

subsequent test runs. This will dramatically speed up your incremental builds.

Containerize your data processing workloads

In a world of Big Data, data processing applications play a major role in business

intelligence. Workloads built on tools such as ElasticSearch, Riak, Cassandra,

and Hadoop allow large amounts of data to be processed quickly. But to support

these workloads, DevOps teams need to be able to support a variety of big data

workloads on the same infrastructure.

What these workloads have in common is the need to scale compute

independently from underlying storage. That means that data should be

separate from, but accessible to, your compute cluster. Containers can help.

Problems with data processing today:

•	 Storage infrastructure doesn’t map onto scale-out compute clusters

•	 Slow volume provisioning times make it hard to quickly scale compute

•	 Hard to support iOPS-intensive workloads and batch jobs on the same

infrastructure

Containerized storage that maps onto your data processing workloads

Some container storage systems are designed to work alongside scale-out

compute clusters like those powering big data workloads. By taking commodity

servers and turning them into a hyper-converged scale-out storage cluster, you

can scale your storage alongside your compute cluster.

Volumes are ready as soon as your container starts

One of the main benefits of containers is how quickly they start. However, if

you have to wait 45 seconds or more to mount a volume to a container each

time it starts, bursting to 1000 nodes for quick data processing is slowed down

dramatically. While it might not be appropriate to use connector-based storage

systems dependent on mount times of the underlying hardware, a storage

system that enables on-demand data volumes for your containers could be a

good choice.

Class of service lets you pick the right storage for your data processing job

Not all Big Data workloads are created equal. Your ElasticSearch-based

business intelligence tooling might need iOPS-optimized storage while

your Hadoop batch jobs might be fine running on slightly slower, but much

cheaper, HDDs. With support for Storage Classes in orchestration systems

such as Kubernetes, you can match the containerized workload to the storage

infrastructure optimized for the task at hand.

Systems such as Portworx can automatically fingerprint all storage resources

20

in your cluster and provide this storage back to containerized applications

based on the class-of-service (COS) requested by the container. By setting the

COS to High for ElasticSearch and Low for Hadoop, your jobs will automatically

run on the most efficient hardware—allowing you to tier your storage.

Containerize your CMS, simplify management

Wordpress and other popular content management systems including Drupal

and Joomla are inherently stateful, storing important data in the application

itself. This makes horizontally scaling these services extremely difficult.

However, container-aware storage systems that expose an NFS-based file

layer let you horizontally scale out CMS sites like Wordpress while managing a

single file layer. Specifically, you can run multiple Wordpress, Drupal, or Joomla

containers and have access to the same underlying data volumes, sharing

states between hosts, without worrying about users colliding on the same file.

Problems with containerizing CMSs today:

•	 CMS are inherently stateful

•	 Hard to share a single volume between hosts

Multiple CMS containers, one volume

Some container storage systems support both multi-reader and multi-

writer modes. That means you can spin up multiple Wordpress or other CMS

containers and back them all onto a single (but shared) Docker volume. This

allows you to horizontally scale your CMS without adding multiple new volumes

that you will have to back up, make HA, and otherwise manage.

Ops automation for your CMS

In addition to providing a single volume for all your CMS containers, many

storage systems can automate operations with snapshots, backups, and

encryption. They can also let you manage your CMS containers from directly

within your scheduler of choice, be it Kubernetes, Mesos, or Swarm.

SOURCES

https://docs.mesosphere.com/

https://docs.docker.com/

https://kubernetes.io/docs/

https://docs.mesosphere.com/
https://docs.docker.com/
https://kubernetes.io/docs/

81e54dfb1345							� 0 KB

f74567fb6632					 � 5.835 KB

a4423c84729					 � 294.5 KB

d4a1f33e8a5a					 	 � 168.1 KB

Centos:17.02 Image

CONTAINER CONTAINER CONTAINER CONTAINER

THIN R/W LAYER THIN R/W LAYER THIN R/W LAYER THIN R/W LAYER

4 Centos containers running on a host

21

APPENDIX

Storage drivers

One area of Docker data management that causes a lot of confusion is storage

drivers. Storage drivers are tools such as Device Mapper, AUFS, Overlay, and

LCFS that many people have heard of and used without understanding what

purpose they serve or how one is different from another.

While an important part of state management for containers, storage drivers

are not the same thing as volume plugins that we saw earlier.

While volume plugins manage the data volume associated with a container, a

storage driver manages the state of the container image itself. In other words,

it does not manage the data in a MongoDB database. Rather, it manages the

code that makes up MongoDB itself and the underlying operating system files

and anything else that is not a specifically mounted data volume. 100% of all

containers, even so-called “stateless” containers, use a storage driver for these

ephemeral layers.

Every time a container is built, committed, pulled, or destroyed, a storage driver

is used. They are absolutely fundamental to overall container performance,

even if the container being run is 100% stateless such as Apache or NGINX.

The Docker storage driver manages a thin writeable layer that every container

has. To see what this means, look at the diagram below.

 Time (Seconds)

Devicemapper

Overlay

Overlay2

LCFS

#
 o

f
C

o
nt

ai
ne

rs

6000

0

100

22

There are two parts to this picture. Starting at the bottom, in the box, we have

4 “layers” that make up the base image. We could run 1000 CentOs containers

and they would all share this base and it never changes because it is read-only.

 On top of this base, we have a thin read-write layer that is sometimes called the

container layer. All writes made to a container are stored in this thin writable

layer: any change that is made to a container gets made in this top-most layer.

Without a storage driver, you could never pull or run, commit or build a container.

The reason is because each container needs this thin read-write layer to operate

and the storage driver manages that layer.

The reason that this is important, is because how a storage driver manages the

thin read-write layer affects performance of all container operations. Not just

stateful container operations.

 This chart shows the times in seconds to create and then destroy a certain

number of containers. Some take more time than others.

Container creation and destruction time by storage driver

23

For example, imagine a container image with 100 layers. If an application running

in a container needs to add a single new value to the very bottom layer, how long

will that take? The answer depends on how the storage driver implements that

operation.

For example, in AUFS, the most popular driver on RHEL, the driver will search

each image layer for the file starting at the top and going to the bottom. When

the file that needs to be modified is found, the entire file will be copied up to the

container’s top writable layer. From there, it can be opened and modified.

The larger the file that needs to be copied, or the more layers there are in the

container, the longer that operation will take. Other storage drivers take a

different approach, making things faster or slower as a result.

Portworx, Inc.

4940 El Camino Real, Suite 200

Los Altos, CA 94022

Tel: 650-241-3222 | info@portworx.com | www.portworx.com

© Portworx BPG7-15-17

mailto:info@portworx.com
http://www.portworx.com

	Introduction:
	The benefits of container-based microservices
	Agility
	Resilience

	The challenge of stateful containers
	High availability
	Security
	Scheduler-based automation
	Any database, any infrastructure

	Working with stateful containers using the leading container managers
	Docker
	Data volumes
	Data volume plugins
	Docker Swarm

	Kubernetes
	Volumes
	Persistent volumes
	Persistent volume claims
	Storage class
	Stateful sets
	Kubernetes volume plugins

	Mesos
	Using Local Volumes
	External volumes

	Data architectures for containerized applications
	Connector-based systems
	Low density of stateful containers per host
	Slow block device mounts

	Key-value based systems
	Container data services platform

	Common use cases for stateful containers
	Reliably deploy and operate containerized databases, queues, and key-value stores
	Speeding up your CI/CD pipeline
	Containerize your data processing workloads
	Containerize your CMS, simplify management

	Sources
	Appendix
	Storage drivers

