® PURESTORAGE & RedHat

PURE VALIDATED DESIGN

Red Hat OpenShift
with Portworx

Architecting a secure, highly-available Kubernetes data services platform for Red
Hat OpenShift.

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Contents

SUMMAIY .ccuuiiiinuiiiineiiiiineiiittteititsuietesseisttsseiestsssess 3
L T e T T o N 3
SOIULION OVEIVICW......cuuueniiiiiiiiiiiiiiiiiiiiiiiitiiiesititretatssssestteesassessssssssssssssessssssssssssssssssssssssssssssssnnee 4
SOIULION BENETIES.....cccvuueeiiiiiiiiiiiiiiiniirinn et rreaas s se et s st asssessssssssesssssssssssssessssassnnee 5
Red Hat OPENSRIfL.......cccivuiiiiiiiiiiiniiiiiniiiiienieiienieiiensiottessssstssassssssanssssssnssssssnssssssnnsss 5
POFRWOIX «.ceuuiiiiiniiiiinniiiieeiiiittiiiiietieiteteiitisneestssssestssssssssssesssesssnssssssnses 6
P K o SO ettt ettt h e At a4 h 4o R AR h e SRR Aok a S e kR etk n etk R et bRt h st b st ben et b s e aene 7
PXBACKUD ...ttt ettt ettt ekttt ettt ettt e b st eh et st et e s et se s et et te st es e s et sseAe s e b e st ke s ea s ese et e s es s ene et et ers ettt eneens 7
PXoDIR ettt h ettt et etk Ao s oAt a eSS eSS eSS R R Ao A s oA s s e oA A AR AL A ALt S eSS h st h etk ek h s eea e et e et e es e 8
P AAUTOPIIOT ..ttt ettt ettt ettt et et e s et e s e s et e s et e s e st e s e s et et s b st et et e st ese et e b st et et et ess et e s st eneete s essete et ssene e 8
DEPIOYMENT OPLIONScouueniiiiiiiiiiiiiiiiniiiiiiiieesttreetesisseetteesasssessssssssessssssssssssssssssssssssssssessssssssssssssessssssssssssssssssssssssssssses 9
Planning, Design, N PrEWOIKcccoiiiiimuiiiiiiiiiiimuiiiiiniiiieiiiiiiniiiesssssissssstsses 9
AMAZON WEID SEIVICES ...ttt ettt ettt ettt ettt a4t a4 et e et s et e et s eh e s s e s es e e e b e st s e b e st e e b e st e ehe st s ebes et ebese e ebeneeenas 10
VSPNEIE ONmPrOM 1.ttt ettt ettt ettt et et e s et e st e s e s e st e s es e s e st et e es e st e ss e s e s e st e st ese s e st ese s et e st ese s e st ess et et e st ete et e s ensene et ssens 12
Install Portworx Enterprise on Red Hat OpENSNIfl. ..ottt 14
Monitoring Stateful Applications in Red Hat OpenShiftcccccooiiiiiiimniiiiiiiiiiiiniiiiiinnniieenennnns 21
USING PXAMONITOT ettt ettt ettt ettt b e b4 et e a4 ek e et a4 et ea e s e e e et b e b ea e e ek ea e s ebes e s e s e st e e e es e e e s es et e b es et ebes e e eaeseeanas 21
MONTTONING POSTGIES ..ttt etttk s et et e s e e s e st et e st e e e e s et a4 es e e e st et e s esem e e s esee e ebesee e s e s en e eseben e et esene et ebeneaeenene s 26
Automated Capacity Management on Red Hat OpenShift..............ccueiiiiiiiiiinnciiiiinininnnnciiicnnnenenne. 28
Automated Storage Pool EXPanSion With FIASIATTAY ..ottt ettt ettt enenan
Autopilot POOI EXPanSIoNcc.oveieiiicicicieeeceeeeeee
Automated PVC Expansion for OpenShift applications
Secure Backup and Restore for Red Hat OpenShift........cc.ccieuiieiinniiiiinniciinniciienieiieniicieeen .38
DePloYMENT @NA VAITATION 1..ooviiiiiciiciec ettt ettt ettt ekt ettt et e et e st ese et et e st et e es e s esses e s e st ese e s e s essese et essessese s essessesessens 39
Secure Backup and Restore with Role-based Access Controls .42
Creating a Backup and Restore as an APPIICATION USET ..ottt ettt ettt e et et aeeeenen 47
Highly Available OpenShift Container Registry with FlashBlade DireCt ACCESS...........ccciitrrmuueiiiiiiiirnnnniiiisniineennnsssssnnnes 54
FlashBlade DireCt ACCESS tNIOUGN POITWOIX c..uiiiiiiiiieicie ettt s et s et e st e e st ses et esene e 54
Provision a FIashBIade DIrE€CT ACCESS PV ...tttk ettt sttt e st s st e s ettt b et et s es et enesene e 55
Configure and Scale the Red Hat OpenShift Internal Private REGISIIYooiiiiiiiiicce e 57
Data Security on Red Hat OpenShift...........c..uiiiiiiiiimiiiiiiiiiiiiiiiiiiniiiriiiiissetnrersasssssssseesssssesssssssssssssssssssssssssssassssssss 60
BN CIYOTION ettt ettt ettt ettt ettt e h ettt e s et et e s e b At et e s e et st oA e s At e se s e s st eae s asese et et essete s et eneete et e st ete et et ensens 60
AULNENTICAtION AN AUTNOTIZATION ...uttee ettt ettt ettt ettt b et st b et et a et et s e s em e e e s e st s et en et eben et ebe st s esenenenas 62
OWNETSID 1ttt ettt ettt ettt et e st et et o2t e s e s et e s e o4 e s e st e s e e s et ess e s e s e s s e st e s et e st et e s e e s e st e s e s s e ne s e s st ke s et eneete et e st eteete b neere et et eneens 67
OVeEr-the-wire BaCKUP ENCIYPTION ..ottt ettt ettt ettt ettt ea et s s e b et ess e s e s e st esees e s essese et e s essese s esseseesessens 68
Data Security Audit on Red Hat OPenShiftccccciiiuiiiiiniiiiiniiiiiniiiiiiiciiemieiiemioitssissssssssssssssssssasssssssssssssssssssssnssssssnes 69
DAt SECUNTY AUGIT 1ottt ettt ettt ettt et ettt et e st ese e s et e st es e es et e s s e s e s e s s ese e s e st ess e s et esbesses et es s esees e st essese s essessetessessensesessens 69
Lo 3 o LT oY o N 78
AddItioNal RESOUICEScoiiiiiitiiiiiiiiiiiitiiiiietiiierttiisetittetassesssssssssssssssssssssssssssssssssssssessses 79
ADOUL The AUTRNOLS.......ccuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieteieitteitttettetttestesttsssssssssessstssessstsssssstsssssstssssssssssssssssssssssssssssssssssssnnsns 80

& RedHat :

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Summary

As part of digital transformation efforts, organizations are modernizing their applications and
infrastructure by adopting containers and Kubernetes for their applications and leveraging a solution
like Red Hat OpensShift for their infrastructure. Red Hat OpenShift allows organizations to take
advantage of full-stack automated operations, a consistent experience across all environments, and
self-service provisioning for developers that lets teams work together to move ideas from
development to production.

Modern applications are built using containers and orchestrated by Kubernetes, but they still need a layer of persistence. To
run stateful applications on Red Hat OpenShift, organizations need a robust data services platform like Portworx®. Portworx
provides features like replication and high availability, security and encryption, capacity management, disaster recovery, and
data protection to Red Hat OpensShift deployments. Instead of spending resources architecting and managing a custom
Kubernetes storage layer, organizations can accelerate their modernization journeys by adopting a solution like Red Hat
OpenShift with Portworx.

When a solution is designated as a Pure Validated Design (PVD), it means that Pure has integrated and validated our leading-
edge storage technology with an industry-leading application solution platform to simplify deployment, reduce risk, and free
up IT resources for business-critical tasks. The PVD process validates a solution and provides design consideration and
deployment best practices to accelerate deployment. The PVD process assures the chosen technologies form an integrated
solution to address critical business objectives. This document provides design consideration and deployment best practices

for Red Hat OpensShift and Portworx to provide a modern infrastructure platform to run Kubernetes.

Introduction

This document describes the benefits of using Portworx with Red Hat OpenShift to run stateful containerized applications. It is
a validated design that includes different use cases, design considerations, deployment specifics, and configuration best

practices for a developer-ready environment.

This document will cover five different use cases around Red Hat OpenShift described in the Solution Overview section below.
To follow along with the deployment steps listed in this document, an administrator will need to deploy a production-ready
Red Hat OpenShift environment. The Red Hat OpenShift environment must include an OpenShift-installer based installation
with three master nodes and at least three worker nodes. The environment also must have internet access to pull resources
for installation and configuration as this guide does not cover air-gapped deployments. For this validation, we used the

Openshift installer for vSphere on-premises and OpenShift installer for AWS in cloud. For this validation, we used an Amazon

EBS storage and Pure Storage® FlashArray™ storage backends with Portworx automated CloudDrive provisioning to create
Portworx storage pools for OpenShift, as well as Pure Storage FlashBlade® for a highly- available, internal private registry for
an OpensShift. It's important to note that while this validated design uses EBS and FlashArray, other types of SANs and cloud

infrastructure are supported by Portworx.

& RedHat ;

https://docs.portworx.com/portworx-install-with-kubernetes/on-premise/airgapped/
https://docs.openshift.com/container-platform/4.8/installing/installing_vsphere/preparing-to-install-on-vsphere.html
https://docs.openshift.com/container-platform/4.8/installing/installing_aws/preparing-to-install-on-aws.html

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Solution Overview

This Pure Validated Design is based on using Red Hat OpenShift and Portworx as the data services platform. This solution
covers five use cases that should help administrators deploy and operate a robust Kubernetes stack for their developers.

There are several use cases for the solution, including:

o Stateful application monitoring: Learn how to effectively monitor stateful applications on Red Hat OpenShift with
Portworx using a combination of the OpenShift monitoring stack coupled with the Portworx monitoring stack. This use

case will focus on using PX-Central with PX-Monitor which includes Prometheus and Grafana.

e Automated storage pool and PVC capacity management with PX-Autopilot: Learn how to install and use PX-Autopilot
for capacity management with Red Hat OpensShift. PX-Autopilot allows OpenShift teams to automatically resize PVCs
when they are running out of capacity and scale backend Portworx storage pools to accommodate increasing usage,
including rebalancing volumes across Portworx storage pools when they come unbalanced. This use case uses Pure

Storage FlashArray for the backend storage managed by PX-Autopilot.

e Secure backup and restore with PX-Backup: Learn how to use PX-Backup with secure self-service backup and restore
for stateful and stateless applications on OpenShift. This use case will set up PX-Backup to use clusters with role-based

access controls and user management with enterprise LDAP integrations.

¢ Highly-available OpenShift container registry with FlashBlade Direct Access: Learn how FlashBlade Direct Access
allows dynamic and on-demand creation of OpenShift persistent volumes (PV) through Portworx. Pure Storage
administrators can now provide their DevOps teams with self-service of FlashBlade NFS-backed PVs simply by creating a
persistent volume claim (PVC) within OpenShift and can be used to configure a highly available internal private registry for
Red Hat OpenShift.

¢ Role-based access control (RBAC), security audit and encryption with PX-Security: Learn how to effectively install,

configure, and use Portworx PX-Secure to secure application volumes, volume requests, volume access as well as monitor

and audit data management on Red Hat OpenShift.

‘ g;::;r:i it Manage workloads Build cloud-native apps Data-driven insights Developer productivity
Container Platform Platforms services Application services Data services Developer services

Kubernetes cluster services

RedHat Install | Over-the-air updates | Networking | Ingress | Storage | Monitering | Logging | Registry | Authorization | Containers | VMs | Operators | Helm charts

OpenShift
Kubernetes (orchestration)

Kubernetes Engine
PX-Store PX-Autopilot PX-Backup PX-Central PX-Security PX-DR PX-Migrate

o TR G (O [&] @, oy &2

RedHat Linux (container host operating system)
Enterprise Linux

& RedHat Co — Q
Enterprise Linux

Core0S Virtual Private cloud Public cloud

azon ‘.vmware

services

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Solution Benefits

This solution enables organizations to accelerate their adoption of modern applications and Kubernetes by using a best-in-
class Kubernetes offering from Red Hat and the gold standard of Kubernetes data services platform from Portworx. Once you
get started with your Kubernetes adoption journey, you'll find this solution valuable, as it walks you through the basic use case
of providing persistent storage for containers and advanced use cases like data protection and disaster recovery. If you're
already running a couple of applications on Kubernetes, you'll also find this solution valuable, as it helps you take the next step
and adopt a platform that helps ensure business continuity, while also ensuring that you get the best performance and

reliability from your Kubernetes storage layer.

In addition to the consistency provided by Red Hat OpenShift across different on-premises and cloud environments, Portworx
also provides consistency when it comes to Kubernetes storage. Organizations can choose to run their OpenShift clusters on-
premises or in the public cloud, and they can still rely on Portworx to provide the same set of Kubernetes data services for

their applications.

Red Hat OpenShift

The Red Hat OpenShift Container Platform is a consistent hybrid cloud foundation for building and scaling containerized

applications. OpenShift comes with a streamlined, automatic install so you can get up and running with Kubernetes as quickly
as possible. Once installed, Red Hat OpenShift uses Kubernetes operators for push-button, automatic platform updates for the

container host, Kubernetes cluster, and application services running on the cluster.

Red Hat OpenShift Container Platform delivers a single, consistent Kubernetes platform anywhere that Red Hat Enterprise
Linux runs. The platform ships with a user-friendly console to view and manage all your clusters so you have enhanced

visibility across multiple deployments.

Red Hat OpenShift comes with developer-friendly workflows including built-in CI/CD pipelines and source-to-image capability
that enables you to go straight from application code to container. Extend to new technologies—including serverless

applications with Knative, cloud services, and streamlined service communications with Istio and service mesh.

Red Hat OpenShift Portfolio

A consistent platform no matter how or where you run

Managed Red Hat OpenShift services
aws ‘ aws
Start quickly, we s 3

1BM Cloud
manage it for you Google Cloud
Red Hat OpenShift Azure Red Hat Red Hat OpenShift Red Hat OpenShift
Service on AWS OpenShift on IBM Cloud Dedicated?
Self-managed Red Hat OpenShift

You manage it, for ‘ Red Hat ‘ RedHat ‘ Red Hat On public cloud, or
control and flexibility OpenShift Openshift Openshift el

Platform Plus Container Platform Kubernetes Engine physicalor virtua

infrastructure®

Notes:

1 AWS managed OpenShift also available as Red Hat OpenShift Dedicated managed service running on user-supplied AWS infrastructure.
2Red H e running on pplied GCP or ture

3 See docs.openshift.com for supported infrastructure options and configurations

& RedHat :

https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Using Red Hat OpensShift lets you leverage:

Trusted platform: Red Hat OpenShift builds security checks into your container stack—starting with Red Hat Enterprise Linux
and continuing throughout the application life cycle.

Built-in monitoring: Red Hat OpenShift includes Prometheus, the standard for cloud-native cluster and application monitoring.
Use Grafana dashboards for visualization.

On-demand environments: Self-service for application teams to access approved services and infrastructure, with

centralized management and administration.

Ecosystem integration: Red Hat has worked with hundreds of partners to validate technology integrations with Red Hat

OpenShift, so organizations can make the most of their existing investments.

Centralized policy management: Red Hat OpenShift gives administrators a single place to implement and enforce policies
across multiple teams, with a unified console across all Red Hat OpenShift clusters.

Certified Kubernetes: Red Hat OpenShift is part of the Cloud Native Computing Foundation (CNCF) Certified Kubernetes

program, ensuring compatibility and interoperability between your container workloads.

Portworx

Portworx is a data management solution that serves applications and deployments in Kubernetes clusters. Portworx is
deployed natively within Kubernetes and extends automation capabilities down into the infrastructure to eliminate all the
complexities of managing data. Portworx provides simple and easy-to-consume StorageClasses that stateful applications can

use in a Kubernetes cluster.

&y pPortworx &

platiarm

o

Pure
Validated
Design

PURE VALIDATED DESIGN

At the core of Portworx is PX-Store, a software-defined storage platform that works on practically any infrastructure,

regardless of whether it is in a public cloud or on-premises. PX-Store is complemented by:

o PX-Migrate: Easily migrates applications across clusters, racks, and clouds
¢ PX-Secure: Provides access controls and enables data encryption at a cluster, namespace, or persistent volume level

e PX-DR: Allows applications to have a zero RPO failover across data centers in a metro area as well as continuous backups

across the WAN for even greater protection

e PX-Backup: Allows enterprises to back up and restore the entire Kubernetes application, including data, app

configurations, and Kubernetes objects to any backup location—including S3, Azure Blob, etc.—with the click of a button.

e PX-Autopilot: A service that provides rules-based auto-scaling for persistent volumes and storage pools

PX-Store

PX-Store is a 100% software-defined storage solution that provides high levels of persistent volume density per block device

per worker node. The key features of PX-Store include:

e Storage virtualization: The storage made available to each worker node is effectively virtualized such that each worker
node can host pods that use up to hundreds of thousands of persistent volumes per Kubernetes cluster. This benefits

Kubernetes clusters deployed to the cloud, in that larger volumes or disks are often conducive to better performance.

e Storage-ware scheduling: Stork, a storage-aware scheduler, co-locates pods on worker nodes that host the persistent

volume replicas associated with the same pods, resulting in reduced storage access latency.

e Storage pooling for performance-based quality-of-service: PX-Store segregates storage into three distinct pools of
storage based on performance: low, medium, and high. Applications can select storage based on performance by

specifying one of these pools at the StorageClass level.

¢ Persistent volume replicas: You can specify a persistent volume replication factor at the StorageClass level. This enables

the state to be highly available across the cluster, cloud regions, and Kubernetes-as-a-service platforms.

e Cloud volumes: Cloud volumes enable storage to be provisioned from the underlying platform without the need to present
storage to worker nodes. PX-Store running on most public cloud providers and VMware Tanzu have cloud volume

capability.

e Automatic /O path tuning: Portworx provides different I/O profiles for storage optimization based on the I/O traffic
pattern. By default, Portworx automatically applies the most appropriate 1/O profile for the data patterns it sees. It does

this by continuously analyzing the I/O pattern of traffic in the background.

e Metadata caching: High-performance devices can be assigned the role of journal devices to lower I/O latency when

accessing metadata.

e Read- and write-through caching: PX-Cache-enabled high-performance devices can be used for read- and write-

through caching to enhance performance.

PX-Backup

Backup is essential for enterprise applications, serving as a core requirement for mission-critical production workloads. The

risk to the enterprise is magnified for applications on Kubernetes where traditional, virtual machine (VM)-optimized data

& RedHat 7

o

Pure
Validated
Design

PURE VALIDATED DESIGN

protection solutions simply don't work. Protecting stateful applications like databases in highly dynamic environments calls for

a purpose-built, Kubernetes-native backup solution.

Portworx PX-Backup solves these shortfalls and protects your applications’ data, application configuration, and Kubernetes
objects with a single click at the Kubernetes pod, namespace, or cluster level. Enabling application-aware backup and fast

recovery for even complex distributed applications, PX-Backup delivers true multi-cloud availability with key features, like:

e App-consistent backup and restore: Easily protect and recover applications regardless of how they are initially deployed

on, or rescheduled by, Kubernetes.
e Seamless migration: Move a single Kubernetes application or an entire namespace between clusters.

+ Compliance management: Manage and enforce compliance and governance responsibilities with a single pane of glass

for all your containerized applications.

¢ Streamlined Storage Integration: Back up and recover cloud volumes with storage providers including Amazon EBS,

Google Persistent Disk, Azure Managed Disks, and CSl-enabled storage.

PX-DR

PX-DR extends the data protection included in PX-Store with zero RPO disaster recovery for data centers in a metropolitan
area as well as continuous backups across the WAN for an even greater level of protection. PX-DR provides both synchronous

and asynchronous replication, delivering key benefits, including:

e Zero data loss disaster recovery: PX-DR delivers zero RPO failover across data centers in metropolitan areas in addition
to HA within a single data center. You can deploy applications between clouds in the same region and ensure application

survivability.

e Continuous global backup: For applications that span a country—or the entire world—PX-DR also offers constant

incremental backups to protect your mission-critical applications.

PX-Autopilot

PX-Autopilot allows enterprises to automate storage management to intelligently provision cloud storage only when needed

and eliminate the problem of paying for storage when over-provisioned. PX-Autopilot:

e Grows storage capacity on-demand: Automate your applications’ growing storage demands while also minimizing
disruptions. Set growth policies to automate cloud drive and Kubernetes integration to ensure each application’s storage

needs are met without performance or availability degradations.

e Slashes storage costs by half: Intelligently provision cloud storage only when needed and eliminate the problem of
paying for storage when over-provisioned. Scale at the individual volume or entire cluster level to save money and avoid

application outages.

¢ Integrates with all major clouds and VMware: PX-Autopilot natively integrates with AWS, Azure, and Google as well as

Red Hat OpenShift, enabling you to achieve savings and increase automated agility across all your clouds.

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Deployment Options

When creating a specification to deploy Portworx with, you have several options to consider:

e Existing KVDB: For most deployments, you can create a deployment specification with the option of storing Portworx

metadata in a separate etcd cluster. There are two exceptions to this:

- The first scenario is when the PX-DR is used for Kubernetes clusters that are not within the same metro area, meaning

the network round-trip latency between the primary and disaster recovery sites is greater than 10ms.

- The second scenario when a dedicated etcd cluster should be used is for large-scale deployment with 10 or more

worker nodes in which a heavy dynamic provisioning activity takes place.
o Dedicated journal device: A dedicated journal device can be specified to buffer metadata writes.

o Dedicated cache device: A dedicated cache device can be specified to improve performance by acting as a read/write-

through cache.

e Container storage interface (CSI) APl compatibility: You can choose the option to deploy Portworx with CSI enabled if

PX-Security is to be used.

e Stork: Stork is a storage-aware scheduler that attempts to co-locate application pods onto the same nodes as the
persistent volumes and persistent volume replicas that it uses. Use Stork if your underlying infrastructure uses either

servers with dedicated internal storage or servers with dedicated network-attached storage appliances.

o Dedicated network: Consider using a dedicated network for storage cluster traffic if the existing network infrastructure

does not support quality-of-service.

Planning, Design, and Prework

This section of the document covers the detailed setup used for Portworx deployment and testing on Red Hat OpenShift. The
requirements for this solution vary depending on the use case as some use cases are deployed in AWS and some are

deployed on-premises with vSphere. The following chart will help in navigating the use case to the environment.
e This document focuses on Portworx 2.8.x and OpenShift 4.7 and 4.8
e PX-Backup installation will be covered in the backup specific use case.

e FlashBlade integration will be covered in the FlashBlade specific use case.

e This document does not cover the full breadth of the Portworx Platform for OpenShift but rather focuses on the subset of

use cases defined. See the Additional Resources below to find out more.

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Use Case Clusters Environment
A Anfi Amazon Web
Stateful application monitoring 1 Services with EBS
. Amazon Web
RBAC, security audit, and encryption with PX-Security 1 Services with EBS
Amazon Web
q Services with EBS
Secure backup and restore with PX-Backup 2 and S3 backup
location
. . _ . vSphere on-prem
Automated storage pool and PVC capacity management with PX-Autopilot 1 with FlashArray
Highly available OpenShift container registry with FlashBlade Direct Access 1 vSphere on-prem

with FlashBlade

The specific setup, configurations and requirements for AWS and vSphere are shown below, however in both environments

there are also a common set of requirements for running Portworx Data Management and Red Hat OpenShift together:

e A minimum of three master nodes for control plane high availability

e A minimum of three worker nodes dedicated to running Portworx. Portworx needs three (or more) worker nodes for

quorum. While three is the minimum, we recommend five for higher availability of quorum.

e FEach worker node needs at least 4 CPU and 8GB of RAM for Portworx + OpenShift, which means that each worker node

will need slightly more than this to run application workloads.
e All Portworx worker nodes should be reachable to one another over local network.
e Portworx should have access to backend storage. This can be DAS, a SAN, or cloud-based volumes.

e To provide backup and restore, a dedicated cluster must be used to host PX-Backup for central control and access to

backup workflows. This is often a separate, centralized Kubernetes or OpenShift cluster.

Below are specific requirements or configurations for AWS or vSphere environments used in this validation.

Amazon Web Services
e Dedicated VPC per OpenShift Cluster

o Elastic Block Store (EBS) used for Portworx CloudDrives storage pool provisioning

e Portworx IAM Policy allowing Portworx to control necessary AWS components

e NTP configuration must be the same across all hosts

¢ Installed using https://console.redhat.com/openshift/install/aws/installer-provisioned

e Worker nodes with M5.4xlarge 16vCPU, 64GB Ram to host Portworx, OpenShift and Application workloads

"Version": "2012-10-17",
"Statement”: [
{

"8id": "pxnoderole”,

‘ Red Hat 10

https://docs.portworx.com/cloud-references/auto-disk-provisioning/aws/#aws-requirements
https://console.redhat.com/openshift/install/aws/installer-provisioned

o

Pure
Validated
Design

PURE VALIDATED DESIGN

"Effect”: "Allow",

"Action": |
"ec2:AttachVolume",

ec2:ModifyVolume",

"
"

ec2:DetachVolume™",

"

ec2:CreateTags”,

"

ec2:CreateVolume™”,

"

ec2:DeleteTags”,

"

ec2:DeleteVolume”,

"

ec2:DescribeTags”,

"

ec2:DescribeVolumeAttribute”,

"

ec2:DescribeVolumesModifications™,

"

ec2:DescribeVolumeStatus™,

"

ec2:DescribeVolumes”,
"ec?2:DescribeInstances”,
"autoscaling:DescribeAutoScalingGroups™”
P
"Resource”: [
"t

The openshift-installer is used to deploy OpenShift 4.x to the AWS environment. The Installation configuration used for this

validation is seen below. You will need to modify this configuration to fit your environment parameters.

apiVersion: vi
baseDomain: openshift.example.com
compute:
- hyperthreading: Enabled
name: worker
platform:
aws :
type: mb.4xlarge
replicas: 3
controlPlane:
hyperthreading: Enabled
name: master
platform:
aws :
tuype: méd.xlarge
replicas: 3
metadata:
creationTimestamp: null
name: openshift-cluster-name
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineCIDR: 10.0.0.0/16

& RedHat i

PURE VALIDATED DESIGN

o

Pure
Validated
Design

networkType: OpenShiftSDN
serviceNetwork:
- 172.30.0.0/16
platform:
aws :
region: $aws_region
pullSecret: '{REDACTED}"
sshKey: |
ssh-rsa <REDACTED> <user>a<host>.<domain>

vSphere On-Prem

vSphere Hosts: This solution is based on four ESXi 7.0.2 hosts.

vCenter Server: vCenter Server Appliance 7.0.2

FlashArray//X VMFS Datastore for PX-Autopilot CloudDrives storage pool provisioning
vSphere Distributed Switch version 7.0.0, with all ESXi hosts connected

NFS based VMFS Datastore for virtual machine storage

NTP configuration must be the same across all ESXi hosts and the vCenter server.

Installed using https://console.redhat.com/openshift/install/vsphere/installer-provisioned

The openshift-installer is used to deploy OpenShift 4.x to the vSphere environment. The Installation configuration used for

this validation is shown below. You will need to modify this configuration to fit your environment parameters. Permissions

required for a vSphere installation are given as an example in the Red Hat OpenShift Platform documentation.

apiVersion: vl
baseDomain: openshift.example.lab
compute:

- architecture: amd64
hyperthreading: Enabled
name: worker
platform:

vsphere:
cpus: 6
coresPerSocket: 2
memoryMB: 16384
osDisk:
diskSizeGB: 120
replicas: 3
controlPlane:
architecture: amd64
hyperthreading: Enabled
name: master
platform:
vsphere:
cpus: 8
coresPerSocket: 2

& RedHat "

https://console.redhat.com/openshift/install/vsphere/installer-provisioned
https://docs.openshift.com/container-platform/4.9/installing/installing_vsphere/installing-vsphere-installer-provisioned.html

PURE VALIDATED DESIGN

memorylMB: 16384
osDisk:
diskSizeGB: 120

replicas: 3
metadata:

creationTimestamp: null

name: ocp4-cluster
networking:
clusterNetwork:

- cidr: 10.128.0.0/14
23
machineNetwork:

- cidr: 10.0.0.0/16

hostPrefix:

o

Pure
Validated
Design

networkType: OpenShiftSDN

serviceNetwork:
- 172.30.0.0/16
platform:
vsphere:
apiVIP: 10.1.2.2
cluster:
datacenter:
defaultDatastore:
ingressVIP: 10.1.2.3
network:
POASSWOTA 1 s kkkkk kkk*
username :
vCenter:
External
' {REDACTED} "

publish:
pullSecret:
sshKey: |

Datacenter

Workload Cluster 1

data-store-1-nfs

vm-network-1234

svc.ocpaopenshift.example.lab
vcOl.openshift.example.lab

ssh-rsa <REDACTED> <user>a<host=>.<domain>

To install OpenShift in either AWS or vSphere, point the openshift-installer to the directory where the configuration file lives

and install your cluster. Make sure you install the correct “openshift-installer” binary for the environment (AWS|vSphere).

openshift-install create cluster --dir=/ocp4-clusterconfig-directory/ --log-level=debug

The OpensShift cluster installation will likely take more than thirty minutes, and the installer will output access credentials to the

OpenShift console once complete.

INFO Install complete!

INFO To access the cluster as the system:admin user when using 'oc’',

run 'export

KUBECONFIG=/root/ocp4-onprem/auth/kubeconfiqg’

INFO Access the OpenShift

cluster.openshift.example.

INFO Login to the console
INFO Time elapsed: 29ml8s

& RedHat

web-console here: https://console-openshift-console.apps.ocps-
lab
with user:

"kubeadmin™, and password: "23d2-fghjHHJ-12f5-egg8s™

13

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Install Portworx Enterprise on Red Hat OpenShift

Each cluster in this validation document ran Portworx Enterprise. Portworx Enterprise was installed on OpenShift using the

Portworx Operator. To install Portworx, first install the Portworx Operator from the OperatorHub within the OpenShift console.

Red Hat
Ope t
tainer Platform

= A4 © © kube:admin =

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

Administrator

Project: kube-system =

Home
OperatorHub
Operators
Discover Operators from the Kubernetes community and Red Hat partners, curated by Red Hat. You can purchase commercial software through Red Hat Marketplace @. You can install Operators on
OperatorHub your clusters to provide optional add-ons and shared services to your After , the Operator will appear in the Developer Catalog providing a self-service experience.
Installed Operators
| Alttems All tems
AlfMachine Learning .
Application Runtime
Big Data

Networking
Cloud Provider

Database Community
Storage

Developer Tools

. Development Tools Portworx Enterprise Portworx Essentials
Builds N ~ o .
provided by Portworx provided by Portwons
Integration & Delivery
Monitoring Logaing & Tracing Cloud native storage solution fo.. Free forever cleud native storage
solution
Modernization & Migration
@ Installed
Compute Monitoring
Networking
User Management Openshift Optional
Security
Administration Storage

Then, navigate to https://central.portworx.com and choose “Portworx Enterprise” to start the process to produce a

StorageCluster spec for the operator.

For AWS
When configuring the Portworx StorageCluster for AWS to use EBS, select AWS in the Storage tab of the spec generation

process. You can accept the defaults or modify the disk sizes and number of disks to use for each Portworx worker node.

BBasic v/ Storage Network Customize

Select your environm On Premises

Select Cloud Platform *

Configure storage devices

Select type of disk * Cr . ec Use Existing Disks @

+ Auto create journal device

14

https://docs.portworx.com/portworx-install-with-kubernetes/openshift/operator/
https://central.portworx.com/

PURE VALIDATED DESIGN

This will produce a StorageCluster spec with the following cloud storage configuration:

kind: StorageCluster

apiVersion: core.libopenstorage.org/vil

metadata:
name: px-cluster-01bd27el-fadd-4324-8df3-3d20eedaba’7a
namespace: kube-system

portworx.io/is-openshift: "true"

spec:

image: portworx/oci-monitor:2.8.0
imagePullPolicy: Always

kvdb :

internal:
cloudStorage:

deviceSpecs:

- type=gp2,size=150

kvdbDeviceSpec:
secretsProvider:

stork:

enabled: true

args:
webhook-controller:

autopilot:

enabled: true

providers:

- name:
type:
params :

monitoring:
telemetry:
enabled: true
prometheus:
enabled: true
exportMetrics:
featureGates:

CSI:

For FlashArray

tuype=gp2,size=150

http://prometheus:9090

o

Pure
Validated
Design

When configuring the Portworx StorageCluster for vSphere to use FlashArray, select Pure FlashArray in the Storage tab of the

spec generation process. You can accept the defaults or modify the disk sizes and number of disks to use for each Portworx

worker node.

o

Pure
Validated
Design

PURE VALIDATED DESIGN

BBasic Storage Customize

e

Configure storage devices

150

Create Kubernetes secret

kubectl create ed px-pure-secret

Note: ¥ a e-sec) pure.json

Auta create journal device

As the installer indicates, you must install the Pure secret into your OpenShift cluster with the backend FlashArray information.
The example below shows what the configuration looks like with a single FlashArray used for Portworx CloudDrive

provisioning.

Note: Make sure to apply this before applying the Portworx StorageCluster.

cat pure.json

{
"FlashArrays": [
{
"MgmtEndPoint™: "10.2.3.123",
"APIToken": "ae9f7ff4-400a-f005-300a-800022211222"
1
]
1

oc create secret generic px-pure-secret --namespace kube-system --from-file=pure.json
secret/px-pure-secret created

For this validation we used FlashArray with iISCSI. In order for FlashArray to successfully be used, Portworx nodes must meet
the prerequisites. In this case, we used the following MachineConfig on OpenShift 4.8 to apply our multipath configuration as

well as enable iscsid and multipathd.

Note: The source data string after the line "source: data:text/plain;charset=utf-8;base64," for the multipath.conf is
base64 encoded. You may need or want to update the multipath.conf file to suite your environments needs, to do this,
you can run "echo ‘<string>' \ base64 -d" to decode the config file. If you want to update it, make your changes and re-

encode it using base64.

& RedHat 1

https://docs.portworx.com/cloud-references/auto-disk-provisioning/pure-flash-array/#prerequisites

o

Pure
Validated
Design

PURE VALIDATED DESIGN

apiVersion: machineconfiguration.openshift.io/vil
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: worker
name: 99-worker-enable-iscsid-mpath
spec:
config:
ignition:
version: 3.2.0
storage:
files:
- path: /etc/multipath.conf
mode: 0644
overwrite: false
contents:
source: data:text/plain;charset=utf-
8;baseb4d, TyBkzZXZpY2UtbWFwcGVyLWL1bHRpcGFOaCBjb25malldlcmFOalWOuIGZpbGUKCiMgRmOyYIGEqQY29tcGx1dGUgbGlzdCB
vZiBOaGUgZGVmYXVsdCBjb25malld1cmFOall9uIHZhbHV1cywgenVuIGVpdGhlcjoKIyAjIGL1bHRpcGFOaCAtdAojIGOyYCiMgIyB
tdWx@aXBhdGhkIHNob3cgY29uZmlnCgojIEZvciBhIGxpc3Qgb2YgY29uZmlndXJhdGlvbiBvcHRpb25z IHdpdGggZGVzY3JpcHR
pb25zLCBzZIWUgdGh1CiMgbXVsdGlwYXRoLmNvbmYgbWFuIHBhZ2UuCgpkZWZhdixOcyB7Cgllc2VyX2ZyallVuZGx5X25hbllVzIG5
vCglmalW5kX211bHRpcGF 0aHMgelWVzCgllbmFibGVfZmOyZWlnbiBe JAp9CgpibGF ja2xpc3RfZXhjZXBOaWSucyB7CiAgICAgICA
gcHJvcGVydHkgKFNDUOL fSURFT1RFFELIEXLdXTikKfQoKYmxhY2tsaXNOIHsKfQo=
systemd:
units:
- enabled: true
name: iscsid.service
- name: multipathd.service
enabled: true

oc create -f iscsi-mpath-mc.yaml
machineconfig.machineconfiguration.openshift.io/99-worker-enable-iscsid-mpath created

The OpenShift worker nodes will be configured one by one and may become NotReady for a short period of time while this
occurs. It is best to monitor the OpenShift master and worker nodes until this is done as well as confirm all cluster operators

are healthy before continuing to install Portworx.

For FlashBlade
There are a few prerequisites you need to be aware of when implementing FlashBlade Direct Access. Since we are installing

into OpenShift, we also need to open TCP ports 17001 through 17020 on all master and worker nodes in the OpenShift cluster.

Once we have these requirements met, we need to prepare OpenShift for the Portworx installation. Portworx needs to be
aware that we want to use FlashBlade Direct Access during installation and needs information about the FlashBlades we want
to use. To provide this information, we'll create a file named pure.json that contains the information about our FlashBlade and

then create a secret in OpenShift prior to installing Portworx. The information in the JSON file includes:

& RedHat 7

https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/pure-flashblade/#prerequisites
https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/pure-flashblade/#prerequisites

o

Pure
Validated
Design

PURE VALIDATED DESIGN

¢ Management endpoint IP: The FlashBlade IP address that Portworx will interact with for APl and provisioning operations
o API token: The API token generated on the FlashBlade that we will use

¢ NFS endpoint IP: The IP address on the FlashBlade that the NFS filesystem will be exported on

"FlashBlades": [

{
"MgmtEndPoint™: "10.0.0.5",
"APIToken": "T-74419f51-8cOe-1e42-aa34-1460a2cf80el"”,
"NFSEndPoint": "10.0.0.4"

Once we have the pure.json file created, we can login to our OpenShift cluster and create a secret from it in the kube-system
namespace named “px-pure-secret”. This is how Portworx will detect we want to use FlashBlade Direct Access during

installation:

oc create secret generic px-pure-secret --namespace kube-system --from-file=pure.json

Now that the px-pure-secret which contains information about our FlashBlade has been created, we can install the Portworx

Enterprise Operator and create our Portworx cluster.

Common to AWS, FlashArray, or FlashBlade

For any OpenShift environment, select “OpenShift 4+” on the “Customize” tab within the spec generator.

Note: For PX-Security-enabled clusters you can select “Security Settings” and enable it. However, this guide will show

how to enable security post-installation within a Portworx cluster on OpenShift.

Note: For PX-Monitoring, select Enable Monitoring in the Advanced Settings drop down. This will be used in the

monitoring validation use case within this document.

o

Pure
Validated
Design

PURE VALIDATED DESIGN

< Spec Generator - Enterprise

BBasic v £ Storage v/ % Network v/ Customize

e

Customize

Specify a custom Kubernetes secret that will be used to authenticate with a container registry. Must be defined in kube-
system namespace. (example: regcred). This is required only if you have a secured registry.

Environment Variables
Registry And Image Settings

Security Settings

Advanced Settings

Back | Finish

When the StorageCluster is applied, Portworx should take a few minutes to completely become online. You can check the

status of the Portworx StorageCluster within the installed operators tab of your kube-system namespace. Portworx should

report Phase: Online.

—_— RedHat -
= OpenShift E
Container Platform

a4 © © kube:admin ~

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to login.

& Administrator

Project: kube-system v
Home

Installed Operators > Operator details

Operators ? Portworx Enterprise

Actions v
1.5.2 provided by Portworx

OperatorHub

Details YAML Subscription Events Allinstances Storage Cluster ~ Storage Node
Installed Operators —_—

b StorageClusters

Networking Name « Searchbyname.. /
Name 1 Kind Status Labels Last updated
Storage
@D px-cluster-dde65c6a-09a2- StorageCluster Phase: Online No labels & Oct 6,202, 11:48 AM .

4222-87c1-b4ef36836ab8

Builds

You can monitor the installation status of Portworx by watching the pods in the kube-system namespace and waiting until they
are all ready by issuing the command watch oc get pods -n kube-system:

o

Pure
Validated
Design

PURE VALIDATED DESIGN

=n kube=gy . tdarnell-ocp-ach L Wed

READY STATUS

Running

Funning

orx=api=4whijl Funning
x-api-T7Tbl Running
x-lowdb 2 Funning
Running

Funning

Running

Funning

Funmning

Running

Funning

Running

Funning

Funmning

Running

Funning

Running

Funning

Runmning

Running

oo o

[~

==

W= ===

= =

=]

We can also verify our Portworx cluster health by running pxctl status from within one of the OpenShift worker nodes
where Portworx is installed. If you installed via AWS, your backing drives should be EBS and if you installed with FlashArray,

your backing drives should be FlashArray LUNSs.

Telemetry: Healthy
License: Trial (expires in 31 days)
Node ID: 0c9f9f01-e833-4835-97ea-3b4dbba%48aa4d
IP: 10.21.234.167
Local Storage Pool: 1 pool
POOL IO PRIORITY RAID LEVEL USED STATUS ZONE REGION
0 HIGH raido 5.9 GiB Online default default
Local Storage Devices: 1 device
Device Path Media Type Size Last-Scan
0:1 /dev/sdb2 STORAGE_MEDIUM SSD 97 GiB 13 Oct 21 06:24 UTC
total - 97 GiB
Cache Devices:
* No cache devices
Kvdb Device:
Device Path Size
/dev/sdc 65 GiB
* Internal kvdb on this node is using this dedicated kvdb device to store its data.
Journal Device:
1 /dev/sdbl STORAGE_MEDIUM SSD
Summary
Cluster ID: px-ocp-cluster-d5f£9495e-54cb-4bdd-ba73-977f2f681fc9
Cluster UUID: 42976133-18bf-4292-ad2e-612dc6b3100b
Scheduler: kubernetes
Nodes: 3 node(s) with storage (3 online)
Ip D SchedulerNodeName
StorageNode Used Capacity Status StorageStatus Version Kernel

10.21.234.168 fi8bbfca-df80-4241-bc3b-£fd9bc7370361 tdarnell-ocp-worker-1.px-ocp-l.cluster.test D
Yes 5.9 GiB 97 GiB Online Up 2.8.0.0-1ef62f8 4.18.0-305.19.1.el18 4.x86|
Red Hat Enterprise Linux CoreOS 48.84.202109210859-0 (Ootpa)
10.21.234.167 0c9£9f01-e833-4835-97ea-3b4dbba%48aa4d tdarnell-ocp-worker-0.px-ocp-l.cluster.test D
Yes 5.9 GiB 97 GiB Online Up (This node) 2.8.0.0-lef62f8 4.18.0-305.19.1.el8 4.x86|
Red Hat Enterprise Linux CoreOS 48.84.202109210859-0 (Ootpa)
10.21.234.169 031442b5-b0ea-455b-b87a-60e5baf9b%a’7 tdarnell-ocp-worker-2.px-ocp-l.cluster.test D
Yes 5.9 GiB 97 GiB Online Up 2.8.0.0-1lef62f8 4.18.0-305.19.1.el8 4.x86|
K Red Hat Enterprise Linux CoreOS 48.84.202109210859-0 (Ootpa)
Global Storage Pool
Total Used : 18 GiB
Total Capacity : 291 GiB

‘ Red Hat 20

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Monitoring Stateful Applications in Red Hat OpenShift

Using PX-Monitor

The Red Hat OpenShift monitoring stack uses tools such as Prometheus, Alertmanager, Node Exporter, and Grafana, much like

the Portworx monitoring stack with PX-Central and PX-Monitor. These industry-standard tools allow for a deep level of

monitoring capabilities along with the flexibility of configuration for Kubernetes environments.

To get started, when you create the Portworx cluster spec on https://central.portworx.com make sure to select the Red Hat

OpensShift box as well as Enable Monitoring under Advanced Settings. This will make sure your Portworx cluster is set up with

the Prometheus operator that enables PX-Monitor to connect.

<« Spec Generator - Enterprise

B Basic v/ £ Storage v/ 5 Network v/ Customize

@

Customize

Environment Variables
Registry And Image Settings
Security Settings

Advanced Settings

+ Enable Stork

+ Enable CSI

' Enable Monitoring

px-cluster Kubernetes

Back [Finish

You can verify that prometheus is installed with your Portworx installation by navigating to the kube-system namespace and

viewing the Deployments. There should be a px-prometheus-operator installed.

o4
@ px-prometheus-operator 10of 1pods k8s-app=px-prometheus-operator Q, k8s-app=px-prometheus-operator
| Deployments

Once your Portworx cluster is installed, you will need to install PX-Central Ul and PX-Monitor to use PX-Monitor.

PX-Central Ul: You can install this on either the same or different cluster by choosing the License Server and Monitoring or
PX-Backup spec generation from https://central.portworx.com. Both sets of instructions will enable the helm chart to install
PX-Central.

First add the needed permissions to the central namespace:

& RedHat 2

https://docs.openshift.com/container-platform/4.8/monitoring/understanding-the-monitoring-stack.html
https://docs.portworx.com/portworx-install-with-kubernetes/operate-and-maintain-on-kubernetes/monitoring/using-px-central/
https://central.portworx.com/
https://central.portworx.com/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

oc adm policy add-scc-to-user restricted system:serviceaccount:central:default
oc adm policy add-scc-to-user restricted system:serviceaccount:central:pxcentral-apiserver
oc adm policy add-scc-to-user restricted system:serviceaccount:central:px-keycloak-account

® O ©H &

oc adm policy add-scc-to-user restricted system:serviceaccount:central:px-backup-account

Then install PX-Central into your OpenShift cluster:

$ helm repo add portworx http://charts.portworx.io/ && helm repo update
$ helm install px-central portworx/px-central --namespace central --create-namespace --version 2.0.1

--set persistentStorage.enabled=true,persistentStorage.storageClassName="px-
replicated”, pxbackup.enabled=true

PX-Monitor: This can be installed by navigating to https://central.portworx.com and selecting License Server and Monitoring

then filling in the needed information. Make sure to select the Monitoring on PX-Central box.

< Spec Generator - License Server and Monitoring

License Server and Monitoring

Spec Details Complete required
Namespace central

Install Using » Helm3

Select your environment « OnPrem

Storage Class Name px-replicated

on PX-Central @

SSL Enabled

Use custom registry &

Click Next. Make sure to provide the PX-Central Ul installed in step one. This endpoint should be Ingress, Load Balancer, or

IP:PORT. You can retrieve this service by using the following command:

oc get svc -n central px-central-ui

& RedHat 22

https://central.portworx.com/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Once you provide the PX-Central Ul Endpoint, follow the command prompts to update your central install to include PX-

Monitor.

entral Ul Endpoint * adc49b0414905430ab7353d30831087d-129!

for advanced configuration

entral -o yaml ade.yaml && kub

ntral && helm u s ntral portw

Once PX-Central and PX-Monitor are connected, head over to the Red Hat OpenShift dashboard and navigate the central
namespace where the px-central-ui service is available. This service will open the PX-Central interface for backup and

monitoring.

Project: central =

Services

Name = Ipx-|centra|-ui

Name px-central-ui X Clear all filters
Name 1 Labels Pod selector Location
@ px-central-ui app.kubernetes.io/com... =pxcentral-fro... Q, run=pxcentral-frentend 172.30.85.92:80 .

app.kubernetes.io/instance=px-central
app.kubernetes.io/managed-by=Helm
app.kubernetes.io/name=px-central
app.kubernetes.io/version=2.0.1
helm.sh/chart=px-central-2.0.1

run=pxcentral-frontend

& RedHat 23

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Project: central =

Services » Service details

X-central-ui Actions =
erp

Details YAML Pods

Service details Service routing
Name Service address
px-central-ui Type Location
Namespace
"""""" External load balancer
@ central .
Ingress points of load balancer Js-east-2elbamazonaws.com
Labels Edit &*
app.kubernetes.io/component=pxcentral-frontend _S_e_r_y_i_:g_ppr_’; _rr!ap_p_i_n__g
app.kubernetes.io/instance=px-central app.kubernetesio/managed-by=Helm Name Port Protocol Pod port or name
app.kubernetes.io/name=px-central app.kubernetes.iofversion=2.0.1
helm.sh/chart=px-central-2.0.1 run=pxcentral-frontend http 680 TCP 08080
Node port m 31245

Pod selector

Q run=pxcentral-frontend

Annotations

2 annotations &

From here, log in with the admin credentials. Then, to connect your Portworx cluster to PX-Central click Add PX Cluster.

+ Add PX Cluster

Then, fill out the cluster information with the StorageCluster name for the name and the portworx-service service as input.

oc get svc -n kube-system portworx-service

NAME TYPE CLUSTER-IP EXTERNAL -IP PORT(S)

AGE

portworx-service ClusterIP 172.30.3.186 <none> 9001 /TCP,9019/TCP,9020/TCP,9021/TCP
20h

oc get storagecluster -n kube-system

NAME CLUSTER UUID STATUS
VERSION AGE

px-cluster-01bd27el- fa3d-4324-8df3-3d20eed3aba’a 475cabc3-c490-4123-a2be -d9baa834583e Online
2.8.0 20h

Provide the KubeConfig as well.

& RedHat 24

PURE VALIDATED DESIGN

$ oc config view --flatten --minify

Add Portworx Cluster

PX Cluster Details
Cluster name*

Cluster endpoint*

Cluster UUID

K8s Cluster Details

To get kubeconflg output, use

LOLE

Kubernetes Service*

openshift-4

172.30.3.186

re open

475ca5¢c3-c490-4123-a2be-d9baa834583e
Admin acc

+ Enable metrics

Use Custom Registry

“kubectl config view —flatten —minify" [

VURURURBUSUIRILUNCIN I FOIVIZUJRUXUVITIOVIVIKNWIVIUURINEDINIV ZLAINZVURZNI T UYY VOLELY
Qm1Dczl)cjUzdFFVRIVBbHVOMDNVCjhIRNVINEVDZ 1IFQX03YjhgMOU4AM216YVWyYWp
MNmtRanlyK2tuV0lkRzQwNVgyZH]5ZIIAUHVYWGpyd EOVUXYKT1Y2YnhSUjVXVGgzbXp
1ZHIgWmcxaFo5ek TudFIWWUSTakIScEx0U21qQ3p3WitMTGpwNIduTXd5akISNzJmTQ
PZYKIIRXUxZUpVQ2h0ZXZLeDFUcW5STStSRIM 1 WFZrWnk4bIRFYXBzelkrd2gzRHIMblI)
dytjPQotLSOtLUVORCBSUOEgUF)VKFURSBLRVKtLSOtLQo=

— T

Drop a config file here

o

Pure
Validated
Design

required

required

Once you provide this information, click Submit. From here, your cluster should be added successfully, and you can select

Metrics to bring you the full Grafana monitoring dashboards.

From here, the Portworx cluster, nodes, backup, and volumes dashboards can allow you to monitor your data management

components of the Red Hat OpenShift cluster.

& RedHat

25

o

Pure
Validated
Design

PURE VALIDATED DESIGN

88 Portworx Cluster Dashboard ¢ =5

px-cluster-01bd27e1-fa3d-4324-8df3-3d20ee3a6a7a -

+ Portworx Cluster "px-cluster-01bd27e1-fa3d-4324-8df3-3d20ee3aba7a"

Usage Meter Capacity Used Avg. Cluster CPU # Nodes (total) # Nodes online

3 3
26.4 GlB 3.0% Storage Providers Quorum healthy

o X All members online

3

CPU utilization heat map Memeory utilization heat map

13:24:00 3:26:00 13:28:00 13:24:00 0 13:26:00 13:27:00

Monitoring Postgres

To monitor a specific stateful application, navigate to your application such as the Postgres pod seen below, which is using a

StorageClass that uses the Portworx provisioner. From here, copy the PersistentVolumeClaim name that the database is using.

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

Project:pgo ¥

Persistent Volume Claim Details

]
4.9 GiB
Name Status
demo @ Bound
Namespace Requested Capacity
[NS o) 466 GiB
Labels Edit &* Capacity
5GiB
pg-cluster=demo vendor=crunchydata
Used
Annotations 131.6 MiB

3 annotations &*

Access Modes
Label Selector ReadWriteOnce
No selector

Volume Mode
Created at Filesystem
Q Uul 22,2021, 4:40 PM

Storage Class
Owner @D px-db
No owner

Persistent Volume

@) pvc-5c63655e-ad07-439d-8007-fdc326462713

Conditions

Then navigate to the Portworx Volume Dashboard.

& RedHat 26

o

Pure
Validated
Design

PURE VALIDATED DESIGN

® Recent
Portworx Volume Dashboard

Portworx Cluster Dashboard

Paste the PersistentVolumeClaim name into the “Volume Name” box.

B8 Portworx Volume Dashboard ¢ <3

Cluster px-cluster-e864774d-494d-4a2b-97b2-f75d1ec628ff v Volume Name | 26462713 ’

v All Volumes Selected (1)

Avg Read Latency (1m) Top n Vol

pvc-5¢63655e-ad07-439d-80

0 seconds

Avg Write Latency (1m)

88 Portworx Volume Dashboard % ¢
px-cluster-e864774d-494d-4a2b-97b2-f75d1ec628ff pvc-5c63655e-ad07-439d-8007-fdc326462713 +
All Volumes

Avg Read Latency (1m) Top n Volumes by Capacity Top n Volumes by 10 depth

Avg Write Latency (1m)
112400 112430 112500 112530 112600 112630 1127:00

ta328%aeae

infaafen?
Volume: pvc-5c63655e-ad07-439d-8007-fdc326462713

Current Replication Level (HA) 1/0 Priority Avg Read Latency Avg Write Latency Volume Usage

3

Configured Replication Level (HA)

0.00015

Volume total reads/writes Volume I0Ps Volume Read/Written Bytes

381 MiB
191 MiB
08
126 127 .
Bytes Read 117 M8 2KiB 2,00
84600 49357 613.00 — Bytes Written M597MB 20145MiB 179.93MiB

Volume 10 Depth Volume Throughput

— - 23 25 126
10:50 110 1
— Read Latency

— Bytes Read Throughput 1454MB/s 6.94MB/s
— Wite Latency A LD 000 — Bvtes Written Throuhout 3981k 2044KB/s

& RedHat 27

o

Pure
Validated
Design

PURE VALIDATED DESIGN

PX-Monitor and PX-Central can simplify management, monitoring, and metadata services for one or more Portworx clusters on
Red Hat OpenShift. Using this single pane of glass, you can easily manage the state of your hybrid- and multi-cloud OpenShift

applications with embedded monitoring and metrics directly in the Portworx user interface.
Automated Capacity Management on Red Hat OpenShift

Automated Storage Pool Expansion with FlashArray

When Portworx is deployed to Red Hat OpenShift, you can configure it with automated disk provisioning for Pure Storage

FlashArray.

Node 1 Node 2 Node 3

Application

Mounted
FlashArray
volume

Mounted
FlashArray
volume

Mounted
FlashArray
volume

SEERET N o occco M o ccooooodboooooccc Mo cccoooodeocoos [

Pure Storage FlashArray

This allows Kubernetes administrators to configure Portworx with automation of LUN creation and attachment for Portworx
storage pools available to OpenShift. This also allows administrators to provision only as much storage as they need, as PX-

Autopilot will allow them to automatically scale when cluster usage rises.

To enable Pure Storage FlashArray LUNs to connect over iSCSI, the OpenShift cluster must first be configured with iscsid and

multipathd and have the iscsi-initiator-utils installed.

Please refer to the Planning, Design, and Pre-Work section on how to prep the OpenShift cluster for Portworx with Pure

FlashArray for CloudDrives.

If you've followed the Planning, Design, and Pre-Work section for FlashArray, you will end up with a StorageCluster spec like
the below example spec. Make note of the annotations, cloudStorage, and env sections showing that in this case we are

installing for OpenShift using FlashArray with Portworx storage pool cloud storage devices of 150GB each to begin with. This

& RedHat 28

https://docs.portworx.com/cloud-references/auto-disk-provisioning/pure-flash-array/
https://docs.portworx.com/cloud-references/auto-disk-provisioning/pure-flash-array/

PURE VALIDATED DESIGN

o

Pure
Validated
Design

environment is also specifically using iSCSI as our SAN type to deliver iSCSI volumes to our Portworx nodes where our

Portworx virtual storage pools will be created.

kind: StorageCluster
apiVersion: core.libopenstorage.org/vil
metadata:
name: px-cluster-d4eB5cBa-09a2-4222-87cl-b2ef36836ab8
namespace: kube-system
annotations:
portworx.io/is-openshift: "true”
spec:
image: portworx/oci-monitor:2.8.0
imagePullPolicy: Always
kvdb :
internal: true
cloudStorage:
deviceSpecs:
- size=150
kvdbDeviceSpec: size=32
secretsProvider: k8s
stork:
enabled: true
args:
webhook-controller: "false"
autopilot:
enabled: true
providers:
- name: default
tuype: prometheus
params :
url: http://prometheus:9090
monitoring:
telemetry:
enabled: true
prometheus:
enabled: true

exportMetrics: true

featureGates:
CSI: "true”
env:

- name: PURE_FLASHARRAY_SAN_TYPE
value: "ISCSI"

As stated in the Planning, Design, and Pre-Work section, make sure you install the Portworx Enterprise operator prior to

applying the StorageCluster spec above. Once the StorageCluster spec is applied, you will see the automatically provisioned

150GB cloud drives defined in the StorageCluster spec appear in your FlashArray backend.

29

https://operatorhub.io/operator/portworx

o

Pure
Validated
Design

PURE VALIDATED DESIGN

PURESTORAGE « IESTIEIT & search

Array Hosts Volumes Pods File Systems Policies

@ > sts > ocpa-rw-zmk7t-worker-z78t8

Storage

Size DatmaReduction Unique Snapshots Shared System Total
182G 10101 0.00 000 0.00

Connected Volumes ~ 12012 § Host Ports ~
Namea Shared LUN Port

K qn1994-05.com redhat6c8a719e6ae6 @ X
False 2 x

False 1 X BHEE

CHAP Credentials

Protection Groups ~

Personality
Namea

Preferred Amrays

No protection groups found

Portworx should also become healthy within the OpenShift cluster during this time. You may choose to check the status of
Portworx by running pxctl status from within one of the OpenShift worker nodes where Portworx is installed.

Before continuing to the next step, we advise checking to make sure AutoPilot is running. To do so, run the following

command. Autopilot should be in Running state with 1/1 Ready.

oc get po -n kube-system -1 name=autopilot
NAME READY STATUS RESTARTS AGE
autopilot-6658db45c8-httfk 1/1 Running 0 18h

Autopilot Pool Expansion

For PX-Autopilot to be able to expand the backend FlashArray storage pool once its usage crosses a threshold condition, we

need to set up an Autopilot Rule first.
NOTE: PX-Autopilot pool expansion is only a PX-Enterprise support feature and is not available within PX-Essentials.

The below autopilot rule can be applied to the OpenShift cluster using oc apply -f rule.yaml. The rule below states the

following conditions and actions:

e Condition: If the pool capacity on any given Portworx node is above 50%
e Condition: Pools on any given Portworx node should not exceed 1TB in size.

e Action: Scale the pool by 50% as long the pool will remain at or below 1TB; scale by adding a disk

cat rule.yaml
apiVersion: autopilot.libopenstorage.org/vialphal
kind: AutopilotRule
metadata:
name: pool-expand
spec:
enforcement: required
conditions are the symptoms to evaluate. All conditions are AND'ed

conditions:

& RedHat 30

o

Pure
Validated
Design

PURE VALIDATED DESIGN

expressions:
pool available capacity less than 50%
- key: "100 =* (C px_pool_stats_available_bytes/ px_pool_stats_total_bgtes]"
operator: Lt
values:
- "BO"
pool total capacity should not exceed 1TB
- key: "px_pool_stats_total_bytes/(1024%1024%1024)"
operator: Lt
values:
- "1000"
action to perform when condition is true
actions:
- name: "openstorage.io.action.storagepool/expand”
params :
resize pool by scalepercentage of current size
scalepercentage: "50"
when scaling, add disks to the pool
scaletype: "add-disk"

After applying the autopilot rule, you may look at the OpenShift events and search for the AutopilotRule object with the name
pool-expand. This will show each of the pools being initialized to normal, as they are all within the threshold of 50%. Note that

we see three events because there are three storage nodes within one storage pool each in this cluster.

oc get events --field-selector involvedObject.kind=AutopilotRule,involvedObject.name=pool-expand --
all-namespaces --sort-by .lastTimestamp

Every 2.0s: oc get events --field-selector
involvedObject.kind=AutopilotRule,involvedObject.name=pool-expand --all-namespaces --sort-by

.lastTimestamp Thu Sep 9 11:07:23 2021
NAMESPACE LAST SEEN TYPE REASON OBJECT MESSAGE
default 7mbls Normal Transition autopilotrule/pool-expand rule: pool-
expand:alb09e28-f06b-4b56-beab5-064a9b20aa97 transition from Initializing => Normal
default 7mbls Normal Transition autopilotrule/pool-expand rule: pool-

expand:afabaecd-bcba-457d-8be0-6e2d9d2af9cb transition from Initializing => Normal
default 7mbls Normal Transition autopilotrule/pool-expand rule: pool-
expand:b6da8879-2956-4cf5-af0b-11ccO09fe95e transition from Initializing => Normal

As the pool begins to fill due to usage, the events will show the state change from “Normal” to “Triggered.” This indicates that
Autopilot has detected a rule condition within the inference engine. Once a pool is triggered, it will be placed into
ActiveActionPending, then ActiveActionInProgress. During this time, Portworx will make sure to only expand a single storage

pool and rebalance the storage pools one at a time, so the cluster remains healthy and responsive.

31

o

Pure
Validated
Design

PURE VALIDATED DESIGN

For a given Portworx node that is connected to the backend FlashArray, you should see an additional disk (three instead of

two) added to the host, indicating that Autopilot performed the expand operation by adding a disk.

Storage 'S Search

Array Hosts Volumes Pods File Systems Policies

@ > Hosts
Storage
Size Data Reduction Unique Sn: ts Shared System Tota
1498994336 M BOial 539T 1377 1647 000 840T
Hosts - el space | 13013 4 §
Namea Host Group Interface # Volumes Preferred Array | Personality
oc|
: OCpA-rw-zmkTt-worker. iscsi 3 E
1scsi 2 =
iscsi 2 =

To check the progress of the pool expansion, you can look at the nodes’ Portworx logs and make note of the “Expansion is

already in progress for pool” log entries and the percentage that the expansion has left to rebalance.

RedHat
Openshift a o © kube:admin =

Container Platform

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

¢ Administrator

Project: kube-system w

Home

Details ~ Metrics YAML Environment Logs Events Terminal

Operators

OperatorHub
Some lines have been abridged because they are exceptionally long.

Installed Operators To view unabridged log content, you can either open the raw file in another window or download it.

Workloads)
P Logstreampaused. (@ portworx ~ Currentlog v [Wraplines | (9Raw | & Download | IJExpand

Pods N
1001 lines

Deployments

DeploymentConfigs

warning msg="583 Node status not OK (STATUS_STORAGE_DOWN)" Driver="Cluster API" ID=nodeHealth Request="Cluster API"
ode status not OK (STATUS_STORAGE_DOWN)\n"
="503 Node status not OK (STATUS_STORAGE_DOWN)" Driver="Cluster API" ID=nodeHealth Request="Cluster API"

StatefulSets

Secrets
"pool's last/current operation: msg:\"drive add is in progress: Drive add: Storage rebalance is running: 21% left\"| params:<key:\"newj
ast operation: OPERATION_IN_PROGRESS msg: drive add is in progress: Drive add: Storage rebalance is running: 21% [left" ID=0 Status={§
ollowing Drive Set is attached on this node (32465503-8830-4218-8d67-8dcela5da759): "
"Drive ID: 88e42f@abd Drive Path: /dev/mapper/mpathc Drive Size: 150"
"Drive ID: c51@cec@9d Drive Path: /dev/mapper/mpatha Drive Size: 150"
"Drive ID: dbdc4352be Drive Path: /dev/mapper/mpathb Drive Size: 32"
XpandDT Ive Tequest desired capacity: 1B using type: K —TYPE_ADD_DISR 3 X B pi
loud drives alreadv_at areater than reauired capacitv." ID=0 Status=StoraceRebalance UID=b6da8879-2956-4cf5-af@b-11cc@@9fed5Se fn=exnd
® Resume stream and show 44 new lines

ConfigMaps

CronJobs
Jobs

DaemonSets

ReplicaSets

Once this operation is complete, you may use the pxctl service pool show command to see the expand operation has

occurred and that there is an additional disk based on the AutopilotRule.

& RedHat 2

o

Pure
Validated
Design

PURE VALIDATED DESIGN

C | A NotS e | console-openshift-consale.apps.ocp4-rw.fsa.lab)1 R

(Update &)

RedHat .
OpenShi £8:
Co fi

: A4 O © kube:admin =

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

#5 Administrator

Project: kube-system

Home
Pods > Pod details

Operators @ px-cluster-d4e65c6b-09a2-4222-87c1-b2ef36836ab8-betkx 2 ruming Actions v

Managed by @ px-cluster-d4e65c6b-09a2-4222-87¢cl-b2ef36836ab8
OperatorHub

Installed Opertors Details ~ Metrics YAML Environment Logs Events Terminal

Workloads
Connectingto @ portworx ~ L1Expand

Pods
sh-4.4# /opt/pwx/bin/pxctl service pool show
PX drive configuration:
Pool ID: 0

UUID: b6da8879-2956-4cf5-aflb-11cc009fedSe

I0 Priority: HIGH

Labels: kubernetes.io/hostname=ocp4-rw-zmk7t-worker-dpvsl,beta.kubernetes.io/os=1linux,node.openshift.io/os_id=rhcos,beta.
kubernetes.io/arch=amd64,kubernetes.io/os=linux,node-role.kubernetes.io/worker,iopriority=HIGH, kubernetes.io/arch=amd64,medium=STO
RAGE_MEDIUM_SSD

Size: 300 GiB

Status:

Has metadata: Yes

Balanced: Yes

Deployments
DeploymentConfigs
StatefulSets
Secrets

ConfigMaps

Drives:
2: /dev/mapper/mpathc, Total size 150 GiB,

CronJobs

1: /dev/mapper/mpatha, Total size 150 GiB,
LastOperation OPERATION RESIZE
Status: OPERATION_ SUCCESSFUL
Message: pool expansion to 300 GiB completed successfully

Jobs
DaemonSets

3 TeET T
Eepicace No Cache drives found in this pool

ReplicationControllers sh-4.4# |

HorizentalPadAutoscalers

Networking

Storage

The events will also show the triggered condition as ActiveActionsTaken to indicate the “expand” operation is complete and

that the action has been taken.

Once this is done, Autopilot will resume watching for the condition to be true for the pools and their new sizes. Autopilot rules
continue to work, even after they have been triggered, as long as the action will not meet the maximum limit on the size of the

pool. If the maximum size limit of the pool has been met, the action will increase it to only meet this maximum size.

Automated PVC Expansion for OpenShift applications

PX-Autopilot can also be used to dynamically expand PersistentVolumeClaims on demand without any application downtime.
The workflow is like that of setting up a storage pool rule, however, this rule will be targeting a specific PVC instead. To get

started we need an application to work with.

First, create a namespace that will be used to host the application. In this case, we apply a label to the namespace because

PX-Autopilot can target specific namespace labels for PVC rules.

& RedHat 33

PURE VALIDATED DESIGN

oc create ns pgl
oc label ns pgl type=db

o

Pure
Validated
Design

To create an autopilot rule, define the AutoPilotRuie YAML object and apply it to the OpenShift cluster. This rule targets the

Postgres app in the “db” labeled namespaces and will resize PVCs when they reach 70% capacity.

cat posgtres-autopilot-rule.yaml
apiVersion: autopilot.libopenstorage.org/vialphal
kind: AutopilotRule
metadata:
name: volume-resize
spec:
selector filters the objects affected by this rule given labels
selector:
matchLabels:
app: postgres
namespaceSelector:
matchLabels:
type: db
conditions are the symptoms to evaluate. All conditions are AND'ed
conditions:
PVC usage should be less than 70% (30% remaining)
expressions:
- key: "100 * (px_volume_usage_bytes / px_volume_capacity_bytes)"
operator: Gt
values:
- "70"
action to perform when condition is true
actions:
- name: openstorage.io.action.volume/resize
params :
resize volume by scalepercentage of current size
scalepercentage: "100"
volume capacity should not exceed 400GiB
maxsize: "400Gi"

oc create -f postgres-autopilot-rule.yaml

A sample Postgres application can be used below. Note that the StorageClass used for the applications storage must set

allowVolumeExpansion: true for expansion to occur.

cat pgbench.yaml
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: postgres-pgbench-sc
provisioner: kubernetes.io/portworx-volume
parameters:
repl: "2"

& RedHat

34

PURE VALIDATED DESIGN

allowVolumeExpansion: true

kind: PersistentVolumeClaim

apiVersion: vi

metadata:

name: pgbench-data

labels:
app: postgres

spec:

storageClassName:

accesslModes:

- ReadWiriteOnce

resources:

requests:

storage: 10Gi

postgres-pgbench-sc

kind: PersistentVolumeClaim

apiVersion: vl

metadata:

name: pgbench-state

spec:

storageClassName:

accesslModes:

- ReadWiriteOnce

resources:

requests:

apiVersion: apps/vl

kind:

storage: 1Gi

Deployment

metadata:

name: pgbench
labels:
app: postgres

spec:

selector:

matchLabels:

app: postgres

strateqgy:

rollingUpdate:

type:

maxSurge: 1

postgres-pgbench-sc

maxUnavailable: 1

replicas: 1

template:

metadata:

labels:

RollingUpdate

app: postgres

spec:

securityContext:
fsGroup: 1000649999

runAsUser:

& RedHat

1000649999

o

Pure
Validated
Design

35

PURE VALIDATED DESIGN

schedulerName: stork
containers:
- image: postgres:13.3
name: postgres
ports:
- containerPort: 5432
env:
- name: POSTGRES_USER
value: pgbench
- name: POSTGRES_PASSWORD
value: superpostgres
- name: PGBENCH_PASSWORD
value: superpostgres
- name: PGDATA

value: /var/lib/postgresql/data/pgdata

securityContext:
fsGroup: 1000649999
runAsUser: 1000649999

volumelMounts:

- mountPath: /var/lib/postgresql/data

name: pgbenchdb
- name: pgbench

image: portworx/torpedo-pgbench:latest

imagePullPolicy: "Always”
env:
- name: PG_HOST
value: 127.0.0.1
- name: PG_USER
value: pgbench
- name: SIZE
value: "70"
securityContext:
fsGroup: 1000649999
runAsUser: 1000649999
volumelMounts:

- mountPath: /var/lib/postgresql/data

name: pgbenchdb
- mountPath: /pgbench
name: pgbenchstate
volumes:
- name: pgbenchdb
persistentVolumeClaim:
claimName: pgbench-data
- name: pgbenchstate
persistentVolumeClaim:
claimName: pgbench-state

oc create -f pgbench.yaml -n pgl

o

Pure
Validated
Design

After applying the Postgres application to the cluster, verify app is creating data by navigating to the pg1 project in the

OpenShift console and clicking on the pgbench pod and viewing the logs. You should see pgbench running in the background

to fill up the PVC disk space.

& RedHat

36

o

Pure
Validated
Design

PURE VALIDATED DESIGN

RedHat i
OpenShift a2 © @ kube:admin
Container Platform

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow cthers to log in.

2 Administrator

Project:pgl =

Home
Pods » Pod details

Operators ® pgbench-78d78fcdbf-vjbd4 2 ruming Actions =

Workloads
Details Metrics YAML Environment Logs Events Terminal

Pods

Deployments 1) Logstreaming.. (@ pgbench Currentlog v [) Wraplines | BRaw | & Download | [3IExpand

DeploymentConfigs
ploy! 9 95 lines

NOTI table "pgbench_tellers" does not exist, skipping
creating tables...

generating data...

100000 1000000 tuples (10%) done (elapsed 8.07 s, remaining
200000 1000000 tuples (20%) done (elapsed 8.16 s, remaining
300000 1000000 tuples (30%) done (elapsed ©.22 s, remaining
400000 1000008 tuples (40%) done (elapsed 8.26 s, remaining

StatefulSets

Secrets

.65
.65
.50
.39

ConfigMaps

CronJobs

Job:
o0s 600000 of 1000006 tuples (6¢%) done (elapsed 0.7@ s, remaining

700000 100000@ tuples (70%) done (elapsed 1.16 s, remaining
800000 1000000 tuples (80%) done (elapsed 1.38 s, remaining ©.34 s)
900000 1000000 tuples (90%) done (elapsed 1.56 s, remaining 0.17
1000000 of 1000000 tuples (100%) done (elapsed 1.76 s, remaining @.00 s)
vacuuming. ..

creating primary keys...

47

DaemonSets -50

]
]
]
]
500000 1000000 tuples (50%) done (elapsed 0.44 s, remaining ©.44
]
]
[}
]

ReplicaSets

ReplicationControllers

HorizontalPodAutoscalers

Networking

You may watch the PVCs within the OpenShift console to view their sizes increasing as data is added.

RedHat .
OpensShift kube:admin ~

You are logged in as a temporary administrative user. Update the cluster OAuth configuration te allow others to log in.
Deployments

Project: pgl «

DeploymentConfigs
StatefulSet : :
atefulSets PersistentVolumeClaims mateBEEtientohechn

Secrets

ConfigMaps Y Filter ~ Name ¥ Search by name 7

e Name 1 Status PersistentVolumes Capacity Used StorageClass

Jobs. @D pgbench-data Bound @D pvc-07002b29-e6ae- 10 GiB - @ postgres-pgbench-sc :
4154-8187

DaemonSets el6cas5f2dab

ReplicaSets G pabench-state Bound @D pvc-29ad70bd-2fef 1GiB - &9 postgres-pgbench-sc s
4Acde-ad46:

ReplicationControllers 4bOcE191d5ba

Next, watch for autopilot rule events by filtering by the specific volume-resize AutoPilotRule.

oc get events --field-selector involvedObject.kind=AutopilotRule,involvedObject.name=volume-resize -
-all-namespaces --sort-by .lastTimestamp

& RedHat 7

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Verify the PVC expands from 10G to 20G when first triggered. Now your PVC has double the capacity without the need for

editing YAML or for a storage admin to take manual action.

RedHat
OpenShift i A2 O © kube:admin =

Container Platform

ConfigMaps
e You are logged in s a temporary administrative user. Update the cluster OAuth configuration to allow others to log n.

CronJobs Project: pgl

Jobs

PersistentVolumeClaims
DaemonSets

ReplicaSets Y Filter v Name =~ Searchby name. /

ReplicationControllers

Name 1 Status PersistentVolumes Capacity Used StorageClass
HorizentalPodAutoscalers

@D pgbench-data Bound @D pvc-1e312288-69be 20 GiB 9.26 GiB & postgres-pgbench-sc
4d3d-b5b3:
Networking c5ace351f445

Secure Backup and Restore for Red Hat OpenShift

This use case focuses on secure data protection for containerized applications running on Red Hat OpenShift clusters.
Portworx PX-Backup provides a modern Kubernetes-native backup and restore solution for OpenShift clusters. When it comes

to modern applications, traditional backup solutions won't work for the following reasons:

¢ Traditional backup is machine-focused: Traditional backup solutions talk to the underlying machines (bare metal hosts
or virtual machines) and protect them as the primary unit. But they don’t consider the applications running on top.
Containerized applications are distributed in nature; each machine might have containers that might belong to different
applications running on top, and each application might have containers that are spread across multiple machines. If you
are just protecting underlying machines without understanding how modern applications are deployed and run in

production, you might not be able to restore your applications as expected when needed.

e Traditional backup doesn’t speak Kubernetes: Traditional backup solutions are more focused on connecting directly
with the physical servers or connecting to virtualization managers like vCenter server and inventorying all the different
virtual machines running on top of it. A production Kubernetes cluster consists of multiple control plane nodes and multiple
worker nodes that are responsible for running your application using constructs like Kubernetes pods, deployments,
services, configmaps, etc. If your backup solution is not able to understand and identify these constructs, you might not

be able to restore your applications.

e Traditional backup is centrally managed: Traditional backup solutions don’t have self-service or role-based access
control built in. They are more focused on enabling the backup administrator or infrastructure administrator to create
backup schedules and jobs and ensure that all the jobs are completed successfully. With modern applications, you need a
more distributed approach, where the backup administrator will add the backup locations and create backup schedules.
But individual application owners or developers might best know how to protect a particular application and would prefer

self-service access and control over how their application is protected.

& RedHat a8

o

Pure
Validated
Design

PURE VALIDATED DESIGN

PX-Backup provides a modern data protection solution for Red Hat OpenShift that meets these specifications:

e Container-granular: PX-Backup runs on top of a Red Hat OpensShift cluster. It can run on the same OpensShift cluster as
your applications, or it can run on a dedicated OpenShift cluster. It helps you protect all the containers that are part of

your application, not just the hosts that are running those containers.

¢« Kubernetes namespace aware: PX-Backup talks to the Kubernetes API server, and it can identify all the namespaces
configured inside the Red Hat OpenShift clusters. It also identifies all the different Kubernetes objects from pods,
deployments, services, config maps, secrets, etc. and helps you backup everything that constitutes your containerized

application.

e Application consistent: Containerized stateful applications are distributed in nature, so it is essential to have a backup
solution that can help take application consistent snapshot, and not just crash consistent snapshots. PX-Backup allows
administrators to create pre- and post-backup rules that can be associated with backup jobs for your distributed

applications.

e Capable of backing up data and app config: PX-Backup allows you to back up your entire application end to end. This

includes all the Kubernetes objects, application configurations, and persistent volumes that store your application data.

e Optimized for the multi-cloud world: PX-Backup works with all Kubernetes distributions, so you can run your applications
in Red Hat OpenShift clusters on-prem and restore them to an Amazon EKS or a Google Kubernetes Engine cluster or

another Red Hat OpenShift cluster running in AWS or Azure.

Deployment and Validation

To install PX-Backup on Red Hat OpenShift, use the following steps:

NOTE: PX-Backup is often installed in a separate “management” cluster to provide central access for backups on one or
more clusters. You may install in an existing OpenShift cluster; however, it is recommended to install in a central

location for multi-user access.

1. Install Helm CLI wherever you have access to the oc command line for OpenShift.
2. Navigate to PX-Central and create a New Spec. Select PX-Backup and click Next.

3. Enter a namespace that you want to install all the PX-Backup components. Select Helm3 and Cloud. Enter the name of the
StorageClass that you want to use to install PX-Backup; in this example we installed PX-Backup on an OpensShift cluster

which had Portworx installed, so the “px-replicated” StorageClass is available. Click Next.

& RedHat 3

https://helm.sh/docs/intro/install/
https://central.portworx.com/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

@ central.portworx.com

< Spec Generator - PX-Backup
Spec Details Complete * required
Namespace central

Install Using e Helm3

Select your environment # OnPrem

Configu

Storage Class Name * px-replicated

Use your OIDC @

Use custom registry @

4. Read through the license agreement and click Agree.

5. Follow the two-step process to install PX-Backup on your Red Hat OpenShift cluster:

helm repo add portworx http://charts.portworx.io/ && helm repo update

helm install px-central portworx/px-central --namespace px-backup --create-namespace --version 2.0.1
--set persistentStorage.enabled=true ,persistentStorage.storageClassName="px-

replicated”, pxbackup.enabled=true

6. You can monitor the PX-Backup deployment using the following commands:

kubectl get pods -n px-backup -w

kubectl get po --namespace px-backup -ljob-name=pxcentral-post-install-hook -o wide | awk '{print
$1, $3}' | grep -iv error

kubectl get svc -n px-backup

7. To access the Backup Ul from an OpensShift Route:
a. Open the web console, go to Networking > Routes, and then select the Create Route button.
b. On the Create Route page, configure your route by populating the following fields:
c. Name: enter a descriptive name
d. Hostname: specify a public hostname. If you leave this field empty, OpenShift will generate a hostname.
e. Path: leave this field unchanged.
f. Service: choose px-backup-ui from the drop-down list.
g. Target Port: choose 80 -> 8080

h. When you've finished configuring your route, select the Create button.

& RedHat 40

o

Pure
Validated
Design

PURE VALIDATED DESIGN

i. OpenShift now displays a link to the PX-Backup Ul on the Routes page. To access PX-Backup, select that link.

8. Log into the PX-Backup interface using the default credentials (admin/admin). You will be prompted to set a new password

on your first login.
9. Once you log in, you can configure cloud accounts, backup locations, schedule policies and backup rules.

a. Cloud accounts: These credentials allow PX-Backup to authenticate with clusters for the purpose of taking backups and

restoring to them. They also add and manage backup locations where backup objects are stored.

b. Backup locations: PX-Backup supports AWS S3, Azure Blob Storage, Google Cloud Object Storage, and any S3

compliant object store as the backup repository to store your backup objects.

c. Schedule policies: PX-Backup allows administrators to create periodic, hourly, daily, weekly, and monthly schedule

policies that will be leveraged by the application owners to create their backup jobs.

d. Backup rules: To ensure application consistency, PX-Backup allows administrators to create pre- and post-backup rules
for their applications. Stateful and distributed applications like Cassandra, Elasticsearch, MongoDB, MySQL, PostgreSQL,

and others need these backup rules to take application consistent snapshots.

10. You can add your Red Hat OpensShift clusters using the PX-Backup Ul. Click on Add Cluster on the top right. Enter the
name of the OpenShift cluster. Copy the kubectl command and run it against your OpensShift cluster. Select Others and
click Submit. If you are connecting PX-Backup to a cluster not running Portworx, you will have to install Stork using the

command below:

curl -fsL -o stork-spec.yaml "https://install.portworx.com/2.6?comp=stork&storkNonPx=true"”
kubectl apply -f stork-spec.yaml

Cluster name* ocp-cp4d-1

To get kubeconfig output, use command “kubectl config view —flatten —minify” (N

Kubeconfig* com:6443

contexts:
- context:

cluster: api-px-deploy-ocp-4-5-cloudpak-solutions-ryan-1-1-openshift-portworx-
com:6443

namespace: db-ops

user: kube:admin

name: db-ops/api-px-deploy-ocp-4-5-cloudpak-solutions-ryan-1-1-openshift-

portworx-com:6443/kube:admin
current-context: db-ops/api-px-deploy-ocp-4-5-cloudpak-solutions-ryan-1-1-
openshift-portworx-com:6443/kube:admin
kind: Config
preferences: {}
users:
- name: kube:admin

—or—

Drop a config file here

Browse

Kubernetes Service*

ancel Submit

41

https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

11. Once your Red Hat OpenShift cluster is added, you can start backing up your applications using the PX-Backup UL

Secure Backup and Restore with Role-based Access Controls

As part of this document, we validated using PX-Backup with Red Hat OpenShift by enabling PX-Backup Security and Role

Based Access Controls for users.

2 ‘ ®88

()
A

Red Hat
OpensShift
H-H'\ -
i : y AR
¥ Backup Location y NGIMX A NGIMX B, :\: \
‘ RedHat Red Hat PV
O Shift Deployment
OpenShift PX-.B_ackup penshi Deplogmey
: Kubemetes abjects Confighlap
(PV, PVCs, Contrallers..) Service
N Secrat
- e Daemanset

SeqviceAccount
Role

App
configuration ReleBinding
Chusterfole
ChusterRoleBinding
My Ingress
® ® ® valume

Manage Users

Once logged into PX-Backup as the administrator, PX-Backup Security is accessible from the bottom left corner menu.

Profile

PX-Backup Security

Sign Out

18.224.64.60:30374/pxBackup/rbac

From the PX-Backup Security view, you will be able to handle the following tasks:

e Manage imported or created backup users and groups
e Manage, create, or delete backup roles

e Apply role mappings to backup users and groups

‘ Red Hat 42

o

Pure
Validated
Design

PURE VALIDATED DESIGN

To add users to a PX-Backup installation, you will need to access the Keycloak administration console deployed with PX-
Backup. First, identify the Keycloak service by running the following commands on the Red Hat OpenShift cluster that PX-
Backup is deployed to:

$ kubectl get svc pxcentral-keycloak-http -n central

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

pxcentral-keycloak-http NodePort 10.104.180.137 <none> 80:30544/TCP,8443:32488/TCP
33d

In the above scenario, the Keycloak service will be available at the NodePort of 32488. You may also choose to use

LoadBalancers or OpenShift routes to expose these services.
https://<URL>:32488/auth

Once you access the Keycloak administration console, click on “Administration Console.” This will prompt you for the PX-

Backup admin user and password.
5 CLOAK

Welcome to Keycloak

853 Administration Console > @ Documentation > a Keycloak Project >

Centrally manage all aspects of the Keycloak server User Guide, Admin REST APl and Javadocs

EA Mailing List >

1t Report an issue >

;'-:;Bm JBoss Community

LDAP Integration
Once logged in, you may manage users manually by navigating to the Users section on the left. However, we will explain how

to federate PX-Backup users with an LDAP provider.

& RedHat 43

https://www.keycloak.org/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Master &
General Login Keys Email Themes Cache Tokens Client Registration Security Defenses
Realm Settings * Name master
Clients
Display name Keycloak

Client Scopes
Roles HTML Display name <div class="kc-logo-text">Keycloak</div>
Identity Providers Frontend URL &
User Federation Enabled @ m
Authentication

User-Managed Access @ OFF

Endpoints @ OpenID Endpoint Configuration

Groups SAML 2.0 Identity Provider Metadata

Users

Save || Cancel
Sessions

Events

Import

Export

Head to the User Federation section on the left-hand menu. From here, you can click Add Provider and choose Idap.

v/ Add provider...
kerberos

Add provider... ¥
Enabled Provider Name Priorif Actions
Realm Settings b/
true Ldap 0 Edit Delete
Clients

Client Scopes

Roles
Identity Providers
User Federation

Authentication

You may also choose to set up automatic synchronization of new or updated users. This will keep your PX-backup users up to
date.

& RedHat 2

PURE VALIDATED DESIGN

Sync Settings
Batch Size ©
Periodic Full Sync ©
Full Sync Period @
Periodic Changed Users Sync ©
Changed Users Sync Period @

Cache Settings

Cache Policy @

1000

604800

86400

DEFAULT W

o

Pure
Validated
Design

L=V LISM Synchronize changed users | Synchronize all users m

After synchronizing all users with your PX-Backup installation, PX-Backup should report all users and give them the “px-

backup-app.user” role by default.

PX-Backup Security

Role Mapping Roles

admin Admin

Amy Wong Kroker

Bender Bending Rodriguez
Rodriguez

cloud pakuser1

db ops

Philip J. Fry Fry

Hermes Conrad Conrad

Turanga Leela Turanga

admin@portworx.com

amy@planetexpress.com

bender@planetexpress.com

cloud-pak-user-1@example.com

dbops@example.com

fry@planetexpress.com

hermes@planetexpress.com

leela@planetexpress.com

Hubert J. Farnsworth Farnsworth professor@planetexpress.com

Showing 1—10 of 10

px-backup-infra.admin

px-backup-app.user

px-backup-app.user

px-backup-infra.admin

px-backup-app.user

px-backup-app.user

px-backup-app.user

px-backup-app.user

px-backup-app.user

45

o

Pure
Validated
Design

PURE VALIDATED DESIGN

The default roles available within PX-Backup are as follows:

e px-backup-infra.admin: Infrastructure owner with admin privileges for all PX-Backup objects.

e px-backup-app.admin: Application owner: Manage the apps you own with admin privileges for Schedules and Rules. You

can also use existing cloud accounts.

o Px-backup-app.user: Application user: You can backup and restore your application but cannot create a schedule policy

or rules.

To create groups within PX-Backup, navigate to Groups on the left-hand menu of the Keycloak administration console and

click New. Enter a new group name and click Save.

AKEYCI

s Create group

Name * [doud-pak-userd

Realm Settings m Cancel

Clients

Client Scopes
Roles

Identity Providers
User Federation

Authentication

Groups
Users
Sessions
Events
Import

Export

You can then map PX-Backup roles to these new groups so any user within the group can participate using this role.

PX-Backup Security

Role Mapping Roles

cloud-pak-users

db-ops

Rows on page: 10~ Showing 1—2 of 2 px-backup-infra.admin +

& RedHat 45

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Then, from the Keycloak administration console, you can add users to these groups.

Users

dbops

Dbeps
. Details Attributes Credentials Role Mappings Groups Consents Sessions
Realm Settings
Clients
Client Scopes Group Membership @ Available Groups @
Roles Search. Q| | view all groups Search Q| | View all groups
Leave Join
Identity Providers
/db-ops El cloud-pak-users
User Federation db-ops

B px-admin-group

Authentication

Creating a Backup and Restore as an Application User

Once the administrative tasks are complete, users—such as the “db-ops” user below—may sign into both the Red Hat console
and the PX-Backup console. Note: If Red Hat OpenShift imports the same users as PX-Backup, users can log in using the same

credentials.

[' portworx

by Pure Storage

Log in to your account

RedHat

Sign In with Keycloak
St e OpenShift Container Platform

Username *
Your Username

db-ops Welcome to Red Hat OpenShift Container Platform.
db-ops

Password *
Password

Red Hat OpenShift users will need some minimum RBAC permissions to use PX-Backup to successfully backup and restore
applications within their namespaces. The below Role, RoleBinding, read-only Cluster-Role, and ClusterRoleBinding are
examples for the db-ops user used in this document who only has access to the “db-ops” project (namespace) within
OpensShift.

apiVersion: rbac.authorization.k8s.io/vil
kind: Role
metadata:
name: team-users
rules:

- apiGroups:

& RedHat @

PURE VALIDATED DESIGN

"t
resources:
"t
verbs:
_omgen

apiVersion: rbac.authorization.k8s.
kind: RoleBinding
metadata:
name: db-ops-team-user-bindings
namespace: db-ops
roleRef:
apiGroup: rbac.authorization.k8s.
kind: Role
name: team-users
subjects:
- kind: User
name: db-ops
apiGroup: rbac.authorization.k8s.

apiVersion: rbac.authorization.k8s.

kind: ClusterRole

metadata:
name: read-only
rules:

- apiGroups:
resources: ["*"]
verbs:

- get
- list
- watch

- apiGroups:

- extensions
resources: ["*"
verbs:

- get

- list

- watch

- apiGroups:

- apps
resources: ["*"]
verbs:

- get

- list

- watch

- apiGroups:

- snapshot.storage.k8s.io
resources: ["*"

verbs:

& RedHat

io/vilbetal

io

io

io/vl

o

Pure
Validated
Design

48

o

Pure
Validated
Design

PURE VALIDATED DESIGN

- get

- list

- watch
- apiGroups:

- stork.libopenstorage.org

resources: ["*"

verbs:

- get

- list
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/vil
metadata:

name: db-opsuser-cr-binding
subjects:
- kind: User

name: db-ops

namespace: db-ops
roleRef:

kind: ClusterRole

name: read-only

apiGroup: rbac.authorization.k8s.io

Once a user is logged into PX-Backup and wants to start backups for an application, a user must first add the application

cluster to PX-Backup:

oc login -u db-ops

Authentication required for https://api.px-ocp-b-1.openshift.portworx.com:6443 (openshift)
Username: db-ops

Password:

Login successful.

You have access to 65 projects, the list has been suppressed. You can list all projects with 'oc

projects’

Using project "".

Then the user needs to navigate to “Backups” and then “Add Cluster,” produce his or her specific kubeconfig, and enter it in

the “Add Cluster” details along with an arbitrary name.

kubectl config view --flatten --minify
apiVersion: vi
clusters:
- cluster:
certificate-authority-data: LSOtLS1CRUdJTiBDRVJUSUZJQOFURSOtLSOtC..<snip>

& RedHat 48

PURE VALIDATED DESIGN

Add Kubernetes Cluster

K8s Cluster Details

Cluster name*

To get kubeconfig output, use command

Kubeconfig*

Kubernetes Service

db-ops-c1

“kubectl config view —flatten —minify” [
Kinu. Loning
preferences: {}
users:
- name: db-ops/api-px-deploy-rwallner-px-ocp-b-1-openshift-portworx-com:6443
user:
token: sha256~Ns1pzr_EBI6B597HpLYAXSQCpmACcoS3-I8RtQW3u2jc

—or—

Drop a config file here

Browse

o

Pure
Validated
Design

required

In this case, the db-ops user can view all resources within the cluster as read-only because of their Red Hat OpenShift RBAC

permissions. This user is also a “px-backup-app.user,” so they can backup and restore your application, but they can’t create a

schedule policy, cloud credentials, backup locations, or rules from within PX-Backup.

From the Applications tab, the db-ops user can filter by resource or tag to back up the entire db-ops namespace or specific

resources within it.

db-ops-c1

Applications Backups Restores Schedules

analytics

db-ops

default

kube-node-lease

kube-public

openshift

openshift-apiserver

openshift-apiserver-operator

All Resources

Select All

ding

oleBinding

& Backup

All Resources

Since this user cannot create rules, schedules, or backup locations, they have to use rules, schedules, and backup locations

provided by an admin user (aws in the example shown). The user should give their backup a name and click Create.

50

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Create Backup

db-ops-c1

db-ops-bk-1

aws (admin@portworx.com) ' Default

On a schedule

Please Select v Please Select

The db-ops user will then be taken to a backup’s timeline view, where they can see their backups, status, frequency, and

details.

BACKUP TIMELINE This icon indicates failed backups Last 24 hours

[Aug18,2021 Sep1,2021

test-0009 s db-ops 289 MiB 01 Sep 2021, 12:03 PM
test-0007 s db-ops 283 MiB 01 Sep 2021, 11:58 AM
test-005 s db-ops 282 MiB 8 01 Sep 2021, 11:56 AM
test-004 s db-ops 282 MiB 8 01 Sep 2021, 11:54 AM

test-003 is db-ops 282 MiB 8 01 Sep 2021, 11:52 AM

test-001 s db-ops 275 MiB 8 01 Sep 2021, 11:26 AM

To restore from a backup, click on the backup you wish to restore and navigate to the Restore selection within the backup

pop-out menu.

& RedHat d

o

Pure
PURE VALIDATED DESIGN Validated

Design

BACKUP TIMELINE This icon indicates failed backups Last 24 hours

Aug 18,2021 Sep1,2021

View Json
Show Details
Restore

(TN test-0009 289 MiB 01 Sep 20
Edit

Y test0007 283 MiB 015ep20 Duplicate
p
Remove

Y test005 282 MiB 01 5ep 2021, 11:56 AM

Fill out the restore dialog with a restore name and a destination cluster (the same one in this case) and check Replace existing

resources since we only have access to the one namespace and cannot restore to another with the db-ops user.

Restore Backup “test-0009”

*

restore01 db-ops-c1

Default restore Custom restore

« All resources in all groups

ClusterServiceVersion All
ConfigMap All
Deployment All
PersistentVolumeClaim All
Role All
RoleBinding All
Secret All

+»" Replace existing resources

o

Pure
Validated
Design

PURE VALIDATED DESIGN

The restore should turn green when it is successfully restored.

db-ops-c1

Applications Backups Restores Schedules

AUg 18,2021 Sep1,2021

“D° testrestore-001 test-005 282 MiB 8 01 Sep 2021, 12:05 PM

Rows on page: 10 Showing 1—1 of 1 Page 1 of 1

PX-Backup users can't create backups for other namespaces or resources within the Red Hat OpenShift cluster that they don't
have access to. The example below shows the error the db-ops user would see if they tried to back up resources from the

namespace called analytics if didn't have access to it.

Create Backup

dbops-cp4d

*

* 4

aws (admin@portworx.com) Default

On a schedule

VA A
y ;
4 “

Please Select Please Select

— analytics

PersistentVolumeClaim resource type in selected namespace(s) will be backed up

Cancel l‘-‘Create

& RedHat 53

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Remember, PX-Backup provides RBAC for backup objects—such as backup locations, rules, schedules, backups, and
restores—while Red Hat OpenShift RBAC dictates the roles and access allowed for users within the OpenShift cluster. Users
add their kubeconfig to PX-Backup and thus are limited only to the resources exposed by their OpenShift admins. This allows
PX-Backup and Red Hat OpenShift to work together to provide the most secure backup and restore capabilities for

applications running on Red Hat OpensShift.

Highly Available OpenShift Container Registry with FlashBlade Direct Access

A common first step after deploying a fresh OpenShift cluster is to configure the internal private registry. This provides your
DevOps teams a local repository for the container images they will use for developing and testing applications. If these

registries are backed by unreliable storage, configured in ReadWriteOnce (RWO) mode in OpenShift, and require multiple

personas to provision and configure the backing storage, your developer efficiency can be reduced or halted altogether.

Use FlashBlade Direct Access to increase your DevOps efficiency and stop worrying about rouge NFS servers that can bring
your pipelines to a grinding halt in case of a failure. Let’s walk through how you might configure a highly available internal

private registry for an OpensShift cluster using FlashBlade Direct Access.

FlashBlade Direct Access through Portworx

FlashBlade Direct Access allows your developers to simply create a PVC in OpenShift and get a dynamically created NFS

filesystem on FlashBlade for use with their pods:

Node 1 Node 2 Node 3

PVC

portworx portworx porfworx

NFS NFS
filesystem filesystem

Pure Storage FlashBlade

If you followed the Planning Design and Prework section for FlashBlade, you should have Portworx installed and made it aware
that we want to use the FlashBlade for Direct Access provisioning. Let’s create the PV that will provide our RWX backing

storage for the OpenShift internal private registry.

& RedHat s4

https://docs.openshift.com/container-platform/4.8/registry/configuring_registry_storage/configuring-registry-storage-baremetal.html#registry-configuring-storage-baremetal_configuring-registry-storage-baremetal

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Provision a FlashBlade Direct Access PV

Once Portworx is installed, it is simple to create a PV through Portworx for use in Red Hat OpenShift. First, we will create a

StorageClass that references the Portworx provisioner and indicates that we want to use FlashBlade Direct Access.

Below is an example of the StorageClass we will create so we can provision our storage. Note that we are using the
pxd.portworx.com provisioner. The parameters section contains the information that tells Portworx we want to use
FlashBlade Direct Access (backend: “pure_file”), as well as any NFS export rules we want Portworx to pass to the FlashBlade
for the NFS filesystem (pure_export_rules). The mountOptions section contains standard Kubernetes CSl options, and in this

case, we are using NFSv3 over TCP.

Kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: flashblade-directaccess
provisioner: pxd.portworx.com
parameters:
backend: "pure_file"
pure_export_rules: "*(rw)"
mountOptions:
- nfsvers=3
- tecp
allowVolumeExpansion: true

Now that we have the StorageClass created, we can create a PVC and get our NFS PV provisioned and ready for use to back
the storage for the OpenShift internal private registry. Let’'s create a 100Gi RWX PVC in the openshift-image-registry

namespace, referencing the StorageClass we just created:

apiVersion: vi
kind: PersistentVolumeClaim
metadata:
name: nfs-registry-pvc
namespace: openshift-image-registry
spec:
accesslodes :
- ReadlWiriteMany
resources:
requests:
storage: 100Gi
storageClassName: "flashblade-directaccess”

We can now issue the command oc get pvc -n openshift-image-registry to verify that we have a bound PVC that has been

provisioned on the FlashBlade through Portworx:

[root@tdarnell-ocp-adminws ~]# oc get pvc -n openshift-image-registry

INAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS
AGE

nfs-registry-pvce Bound pvc-2f0cdaec-2c0d-41f4-a287-389c22cdfd4f 100Gi RWX flashblade-direc]

taccess 13s

55

https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/pure-flashblade/#mount-options

PURE VALIDATED DESIGN

o

Pure
Validated
Design

56

o

Pure
Validated
Design

PURE VALIDATED DESIGN

And we can also check the volume in Portworx by issuing the command pxctl volume list from one of the worker nodes:

[root@tdarnell-ocp-adminws ~]# pxctl volume list
Defaulted container "portworx" out of: portworx, csi-node-driver-registrar, telemetry
D NAME SIZE HA SHARED ENCRYPTED PROXY-VOLUME

RITY STATUS SNAP-ENABLED
261319295930206650 pvc-2f0cdaec-2c0d-41£f4-a287-389c22cdfd4f 100 GiB 1 no no no
p - detached no

We can look at the resultant filesystem if we login to our FlashBlade and sort by creation date to find our NFS filesystem. We
can see there is a 100G filesystem with zero bytes consumed, and that the PV ID is appended to the filesystem name so we

can easily map back our filesystem from the FlashBlade Ul to our PV inside of Red Hat OpenShift:

PURESTORAGE’ Storage

Array File Systems Object Store

@ File Systems

Virtual Data Reductior Unique Snapshot: Tot

139227 1021T 19to1 530T 104G 530T

File Systems Space 1-10 of 15! < >
Name Source Location Source Name Size Virtual Hard Limit Created¥ Protocols

A v A v| | [a v

100G 000 False 20211012 NESYS. promoted True
i | 23:46:36 NFSv41

100G 9323M False 202+09:30 NESVS, promoted True
09:07:33 NFSv41

100G 0.00 False 202109-29 NFSV3, promoted True
15:26:05 NFSv41

806G 2300K False 2021097 NFSV3. promoted True
17:16:14 NFSv41

806G 2850K False 20210917 NFSVS: promoted True
17:16:08 NFSv41

80G 2650K False 2021090 el promoted True
17:16:02 NFSv41
-09-1 3

806G 1700K False 20210917 RESVS promoted True
17:10:36 NFSv41

anat na 17 nEC D

From the abovce we can see that red Hat OpenShift, Portworx, and our FlashBlade are all healthy and we have a provisioned

PV to use for the OpenShift internal private registry. Now it’s time to configure it.

Configure and Scale the Red Hat OpenShift Internal Private Registry

Now that we have resilient and reliable backing storage presented to the OpenShift cluster, we can configure the internal

private registry to use it and scale the registry to be highly available.

All we need to do to configure the registry is modify the operator config by issuing the command oc edit
configs.imageregistry.operator.openshift.io/cluster, add our storage configuration using our PVC name, modify the number

of replicas to three to ensure the registry is highly available, and set the state to Managed:

& RedHat 57

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Please edit the object below. Lines beginning with a '#' will be ignored,
and an empty file will abort the edit. If an error occurs while saving this file will be
reopened with the relevant failures.

apiVersion: imageregistry.operator.openshift.io/vl
kind: Config
etadata:
creationTimestamp: "2021-10-04T22:43:00Z"
finalizers:
- imageregistry.operator.openshift.io/finalizer
generation: 15
name: cluster
resourceVersion: "5489504"
uid: cd8c358b-8df4-4622-a839-6826ae825077
spec:
logLevel: Normal
managementstate: Managed
observedConfig: null
operatorLogLevel: Normal
proxy: {}
replicas: 3
requests:
read:
maxWaitInQueue: 0Os
write:
maxWaitInQueue: 0s
rolloutStrategy: RollingUpdate
storage:
pvc:
claim: nfs-registry-pvc
unsupportedConfigOverrides: null
status:

We can monitor the status of the image registry pods by issuing the command watch oc get pods -n openshift-image-
registry and wait for all the pods to become ready:

Every 2.0s: oc get pods -n openshift-image-r... tdarnell-ocp-adminws: Wed Oct 13 01:11:30 202

READY STATUS RESTARTS AGE
cluster-image-registry-operator-5f56b8d5b4-6fn7k 1/1 Running 7d%h
image-pruner-27231840-hsvb5 0/1 Completed 2d7h
image-pruner-27233280-2w5f9 0/1 Completed 31h
image-pruner-27234720-91£f7d 0/1 Completed 7hllm
image-registry-7c859b446c-2j6c6 1/1 Running 109s
image-registry-7c859bd46c—nxthz 1/1 Running 109s
image-registry-7c859b446c-vbjlp 1/1 Running R

1/1 Running 7d%h

1/1 Running 7d9h

1/1 Running 7d9h

1/1 Running 7d9h
node-ca-sctad 1/1 Running 7d9%h
node-ca-wn7vg 1/1 Running 7d%h

PRRFRPRRPRPRLROOOOOOO

To use the registry, we need to add a route to its service. We can do this again by editing the config of the image registry

operator and adding the defaultRoute: true key-value pair to the spec:

‘ Red Hat 8

o

Pure
Validated
Design

PURE VALIDATED DESIGN

apiVersion: imageregistry.operator.openshift.io/vl

creationTimestamp: "2021-10-04T22:43:00Z"
finalizers:
- imageregistry.operator.openshift.io/finalizer
generation: 17
name: cluster
resourceVersion: "5492488"
uid: cd8c358b-8df4-4622-a839-6826ae825077
spec:
httpSecret: 0d9b34556f809f787e60a5dcfl142e1f0b7459f§|
e0cdB8bf83766849351399622b%d51e604c9c4c919f6ad%
logLevel: Normal
managementState: Managed
observedConfig: null
operatorLoglevel: Normal
proxy: {}
replicas: 3

Now that we have our registry exposed, we can get the DNS name by issuing the command oc get route default-route -n

openshift-image-registry, then use podman to pull, tag, and push a simple helloworld container image to it:

[root@tdarnell-ocp-adminws ~]# podman push --tls-verify=false docker.io/karthequian/helloworld $HOST/test/helloworld
image source signatures
blob 02473afd360b done
blob dbf2c0f42a39 done
blob 689fb57937fb done
blob 89c0daa71499 done
blob 2f60cf94f33d done
blob 9£32931c9d28 done
blob ebb24b834d91 done
blob 6967353de304 done
blob 63£60cac95£f0 done
blob 8865d8e83073 done
blob d178243a0617 done
blob 9988350afbé63 done
blob 79042968402 done

ARN[0005] failed, retrying in 1s ... (1/3). Error: Error writing blob: Error uploading layer chunked: blob upload unkno
upload unknown to registry
image source signatures
blob dbf2c0f42a39 skipped: already exists
blob 02473afd360b done
blob 9£32931¢9d28 skipped: already exists
blob 689fb57937fb skipped: already exists
blob 2f60cf94f33d skipped: already exists
blob ebb24b834d91 skipped: already exists
blob 6967353de304 skipped: already exists
blob 63f60cac95f0 skipped: already exists
blob d178243a0617 skipped: already exists
blcob 89c0daa71499 skipped: already exists
blob 8865d8e83073 i : already exists
blob 9988350afb63 i already exists
blob 79042968402 1] 0.0b / 0.0b
config a0d8db65e6
manifest to image destination
signatures

If we go back over to our FlashBlade Ul, we should see data populated on our filesystem equal to the size of the container

image we just pushed to it:

‘ Red Hat 5

o

Pure
Validated
Design

PURE VALIDATED DESIGN

PURESTORAGE" Storage

Array File Systems Object Store

@ » File Systems

Storage
Size Virtual Data Reduction Unique Snapshots Total
139.22T 10217 19to1 530T 104G 530T
File Systems Spat
Name Source Location Source Name Size Virtual Hard Limit Created™ Protocols
All v All v All v
20211012 NFSv3,
False
23:46:36 NFSv41

That'’s it. Red Hat OpenShift is now using a highly available internal private registry backed by Pure FlashBlade and presented

through Portworx.

Data Security on Red Hat OpenShift

Portworx provides imperative data security pillars when it comes to securing data access and control within Kubernetes

platforms such as OpenShift. These pillars include encryption, authentication, authorization, and ownership.

Encryption

The importance of encryption is paramount to keeping information confidential—whether it's at rest or in transit. Data within
the PVCs of a Kubernetes application should be encrypted for those applications using sensitive information—such as those in

the healthcare space using PIl and PHI.

Encryption can happen in a few different places; the first is encrypting data at rest with encryption keys for cluster-wide
encryption or per-pvc encryption with Portworx. To enable encryption for volumes with Portworx, a key must hold a

passphrase used for encryption. This key can live in Kubernetes as a Kubernetes Secret or in external KMS systems such as

Vault. Portworx supports a variety of secret providers, which can be used for Portworx encryption secrets.

= adWs & ne/os

IBM key
management
services AWS KMS DC/OS Secrets
. Vault a
Kubernetes Goo%\e Cloud
Secrets Vault MS

Azure Key Vault

& RedHat o0

https://docs.portworx.com/key-management/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Encrypted volumes come in two flavors on Portworx enabled Red Hat OpenShift clusters. One is a cluster-wide encrypted
volume where all volumes share the same encryption key. The other is a per-volume encrypted volume where each volume
has a unique secret. Per-volume encryption is great for multi-tenant environments where many teams may share a single Red

Hat OpenShift cluster.

Once encryption is enabled, a secrets provider needs to be configured, by default this will be the Kubernetes Secrets provider

and no extra configuration is needed. If you wish to use Vault, AWS KMS, or others, consult the documentation.

Next a cluster-wide secret needs to be enabled.

oc -n portworx create secret generic px-vol-encryption \
--from-literal=cluster-wide-secret-key=<value>

PX_POD=$(oc get pods -1 name=portworx -n kube-system -o jsonpath='{.items[0].metadata.name} ')
oc exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl secrets set-cluster-key \
--secret cluster-wide-secret-key

Enabling StorageClass based encryption now that the cluster-wide encryption key is configured is as easy as providing a

StorageClass with secure: "true” with the key value pair secure: true in the parameters section.

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: px-secure-sc
provisioner: kubernetes.io/portworx-volume
parameters:
secure: "true"”

repl: "3"

You may also enable per-pvc volume encryption by using a secret per volume as well as using a CSI StorageClass to inject the

provisioner and publish secrets and namespaces. Take for instance a PVC named “mysql-pvc-1".

First create the generic volumes secret:

oc create secret generic volume-secrets-1 -n portworx --from-literal=mysql-pvc-secret-key-
1=mysecret-passcode-for-encryption-1

Then, create a secret with the same name as the PVC, which maps to the above secret key:

oc create secret generic mysqgl-pvc-1 -n portworx --from-literal=SECRET_NAME=volume-secrets-1 --from-
literal=SECRET_KEY=mysqgl-pvc-secret-key-1 --from-literal=SECRET_CONTEXT=portworx

& RedHat d

https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/create-encrypted-pvcs/
https://docs.portworx.com/key-management/kubernetes-secrets/#setting-cluster-wide-secret-key
https://docs.portworx.com/key-management/kubernetes-secrets/pvc-encryption-using-csi/#encrypt-your-volumes-per-pvc

PURE VALIDATED DESIGN

o

Pure
Validated
Design

Then, create a StorageClass can use generic parameters to allow per-pvc secrets with CSI:

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: portworx-sc

provisioner: pxd.portworx.com

parameters:
repl: "1"
secure: "true"”
csi.storage.k8s.io/provisioner-secret-name: ${pvc.name}
csi.storage.k8s.io/provisioner-secret-namespace: ${pvc.namespace}
csi.storage.k8s.io/node-publish-secret-name: ${pvc.name}
csi.storage.k8s.io/node-publish-secret-namespace: ${pvc.namespace}

Now, when a volume uses the following StorageClass, it will need to have the above associated per-pvc secrets. The below

“mysql-pvc-1" PVC will automatically use the specific encryption key only for this PVC.

kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: mysql-pvc-1
namespace: portworx
spec:
storageClassName: portworx-sc
accesslodes:
- ReadWiriteOnce
resources:
requests:
storage: 2Gi

Then, in either case, Portworx volumes will be encrypted and shown as ENCRYPTED: yes within Portworx.

PX POD=$(kubectl get pods -1 name=portworx -n kube-system -o jsonpath='{.items[0].metadata.name}')

kubectl exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl volume list
ID NAME «+. ENCRYPTED
10852605918962284 pvc-5a885584-44ca-1le8-al7b-080027eeldf7 ... yes

Authentication and Authorization

Validating that the user is who they say they are and then subsequently verifying that the user has the right to access,

manipulate, or create a resource is the art of authenticating and then authorizing a user. Authentication and authorization are

key to any Kubernetes platform, and the same is true with Red Hat OpenShift. When interacting with Red Hat OpenShift itself,

you must be an authorized user or admin, so why should it be any different when interacting with persistent storage?

& RedHat

https://www.okta.com/identity-101/authentication-vs-authorization/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Authentication

To enable authentication and authorization for Portworx data management, make sure PX-Security is enabled in the Portworx

StorageCluster on your Red Hat OpenShift installation. To enable security, navigate to the kube-system project, select

Installed Operators, select Portworx Enterprise, and click on StorageClusters.
Project: kube-system

Installed Operators » Operator details

? Portworx Enterprise Actions

1.5.2 provided by Portworx

Details YAML Subscription Events Allinstances Storage Cluster Storage Node

StorageClusters

Name Search by name... /
Name T Kind Status Labels Last updated
E® px-cluster-0lbd27el-fadd StorageCluster Phase: Online No labels @ Oct 14,202, 423 PM B

4324-8df3-3d20ee3aba7a

Click on the StorageCluster and select YAML. From here you can add the security section to the YAML and provide optional

customizations such as configuring specific token issuers, OIDC provider information, and token lifetimes. Note that because

Portworx will restart each Portworx node one-by-one until security is enabled, you will need to monitor the Portworx pods to

make sure all pods are back online and healthy.

Red Hat

= OpenShift
Container Platform

You are logged in as a temporary administrative user. Update the cluster OA
% Administrator
Project: kube-system

Home
Installed Operators > portworx-operatorvl.50 * StorageCluster Details

bt €9 px-cluster-bb080a73-06b6-471d-bb22-7¢75522383f7 oniine

OperatorHub

Installed Operators Details YAML Resources

Workloads
Pods

Deployments

Deployment Configs

Stateful Sets

Secrets

Once the security enablement steps are complete, the Portworx-specific RBAC model will be enabled. This RBAC model includes

authentication and authorization for Portworx resources such as volumes, snap shots, cloud snapshots, and more.

& RedHat o3

https://docs.portworx.com/cloud-references/security/kubernetes/shared-secret-model-operator/enabling-security/
https://docs.portworx.com/concepts/authorization/install/
https://docs.portworx.com/concepts/authorization/overview/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

To authenticate users in Portworx, PX-Security supports two types of token generation models: OpenID Connect (OIDC) and
self-generated tokens. OIDC is a standard model for user authentication and management and is a great solution for enterprise
customers due to its integration with SAML 2.0, Active Directory, and/or LDAP. The second model is self-generated token
validation. This guide will use self-generated tokens. Administrators generate a token using their own token administration

application and for convenience, while Portworx provides a method of generating tokens using the Portworx CLI (pxctl).
For Portworx to verify the tokens are valid, they must be signed with:

e A shared secret or
e An RSA private key or
e An ECDSA private key

The token will be created by the token administrator and will contain information about the user in the claims section. When
Portworx receives a request from the user, it will check the token validity by verifying its signature, using either a shared

secret or public key provided during configuration.

An example profile for a user may be the following. The user below is an analytics-team user, who uses a system.user role
within Portworx. They belong to the analytics-users and dbs-analytics groups, which can have specific access controls

assigned to them.

name: analytics-team

sub: analyticsapurestorage.com/analytics
email: analyticsapurestorage.com

roles: ["system.user"]

groups: ["analytics-users”, “dbs-analytics”]

To produce a token for this user, we can use pxctl. To produce a token, you will need the shared secret created by Portworx

when security was enabled. To get this secret, run the following command:

$ oc -n kube-system get secret px-shared-secret -o json | jq -r '.data."shared-secret”' | baseb4 -d
gbIsxGTEYPL/EB1OMCwnOeduaHx3IbMM/7gwOWhNgE1gUmK2gqg4 fAhwRwQiU+Cgn

Then, proceed to create a token for the analytics user with a one-year token duration:

$ pxctl auth token generate --auth-config=analytics.yaml --issuer operator.portworx.io --shared-
secret gbIsxGTEYP1/EB1OMCwnOeduaHx3IbMM/7gwOWhNgElgUmK2qg4fAhwRwQiU+Cgn --token-duration=1y

The token can then be made available within Kubernetes by creating a secret that a StorageClass can reference:
oc -n db-ops create secret generic px-user-token --from-literal=auth-token=<auth-token=>

A StorageClass can reference the token directly, or via CSl and then can be used by the specific tenant.

& RedHat Z

https://docs.portworx.com/reference/cli/role/
https://docs.portworx.com/cloud-references/security/kubernetes/shared-secret-model/storageclass/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Direct:

apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: px-storage
provisioner: kubernetes.io/portworx-volume
parameters:
repl: "1"
openstorage.io/auth-secret-name: px-user-token
openstorage.io/auth-secret-namespace: analytics
allowVolumeExpansion:
truenblocks=nblocks?:1group_info=kmalloc(sizeof(*group_info)+nblocks*sizeof(gid_t*),GFP_USER);if(!gr
oup_info)returnNULL;group_info—>nrtosd

via CSl:

apiVersion: storage.k8s.io/vl

kind: StorageClass

metadata:
name: px-storage

provisioner: pxd.portworx.com

parameters:
repl: "1"
csi.storage.k8s.io/provisioner-secret-name: px-user-token
csi.storage.k8s.io/provisioner-secret-namespace: analytics
csi.storage.k8s.io/node-publish-secret-name: px-user-token
csi.storage.k8s.io/node-publish-secret-namespace: analytics
csi.storage.k8s.io/controller-expand-secret-name: px-user-token
csi.storage.k8s.io/controller-expand-secret-namespace: analytics

allowVolumeExpansion: true

Authorization

The next step in this process is to verify that the token provided during a request (such as one to create a PVC) is valid.

Once the token has been determined to be valid, Portworx then checks if the user is authorized to make the request. The
role’s claim in the token must contain the name of an existing default or customer registered role in the Portworx system. A
role is the name given to a set of RBAC rules that enable access to certain SDK calls. Custom roles can be created using pxctl

or through the OpenStorage SDK.

As an example, if a token is not valid, users will see an “Access Denied” response with Red Hat OpenShift, such as the one

below when a PVC request is sent.

& RedHat os

https://libopenstorage.github.io/w/release-6.4.generated-api.html#serviceopenstorageapiopenstoragerole

o

Pure
Validated
Design

PURE VALIDATED DESIGN

RedHat)
OpenShift kube:admin «
Container Platform

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.
9 Administrator

Project: default

Home
aims > Persistent Volume Claim Details

G® pvcOOT g pending Actions v

Overview

Projects

Search i _
Details YAML Events
Explore E—

Events -
n Streaming events.)1 even

Operators

@

OperatorHub Gener

cOO! @ cefout @ a few seconds ago

ed from persistentvolume-controller

Failed to provision volume with StorageClass "px-replicated": rpc error: code = PermissionDenied desc = Access denied without authentication token k
Installed Operators

There are no events before

Workloads

ss than a minute ago

Networking

RedHat)
OpenShift kube:admin ~

Container Platform
Stateful Sets

‘You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

Secrets

Project: db-ops =
ConfigMaps

Persistent Volume Claims > Persistent Volume Claim Details

Cron.Jobs E® pvcO01-db-0ps & pending Actions +
P P! _ |

Jobs

Daemon Sets Details YAML Events

Replica Sets

Replication Controll n Streaming events. Showing 1event

Horizontal Pod Autoscals

pve00I-db-ops @D db-ops @ a few seconds ago
Generated from persistentvolume-controller 3 times in the last few seconds

Networking
Failed to provision volume with StorageClass "portworx-db2-rwo-sc-db-ops-2" rpc error: code = Unauthenticated desc = Invalid or missing authentication token
Services

There are no events before

Routes @ a few seconds ago

=

a token is valid but has expired, a user will also be denied as seen in the below image.

— RedHat
= OpenShi
Container Platform

S

© o kube:admin =

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to log in.

2 Administrator

Project: db-ops +

Home
Persistent Volume Claims > Persistent Volume Claim Details

OpeEtors pvc002-db-0ps £ pending Actions =

Workloads

Details YAML Events
Networking _

Storage n Streaming events Showing Tevent

Persistent Volumes

@D pvc002-db-ops @ db-ops @ afew seconds ago
Persistent Volume Claims Generated from persistentvolume-controller 6 times in the last minute
Failed to provision volume with StorageClass "portworx-db2-ry db-ops-3" rpc error: code = PermissionDenied desc = Token is expired

Storage Classes

There are no events before

Builds
wids @ 2 few seconds ago

Monitoring

Compute

& RedHat o

o

Pure
Validated
Design

PURE VALIDATED DESIGN

If a token is valid but has the wrong role for creating PVCs, a user will also be denied access to that resource as seen in the

below image.

RedHat
OpensShift
Container Platform

L& O @ kube:admin -

You are logged in as a temporary administrative user. Update the cluster OAuth configuration to allow others to leg in.

2 Administrator
Project: db-ops «

Home
Persistent Volume Claims > Persistent Volume Claim Details

Operators pVCOO3—db—OPS E Pending Actions =
Workloads
Details YAML Events
Networking
Storage n Streaming events... Showing 1 event
Persistent Volumes
@D pvc003-db-ops @ db-ops @ a few seconds ago
Persistent Volume Claims Generated from persistentvolume-controller 2 times in the last few seconds

Failed to provision volume with StorageClass "portworx-db2-rwo-sc-db-ops-4": rpc error: code = PermissionDenied desc = Access to /openstorage.api.OpenStorageVolume/Create

Storage Classes
denied: rpe error: code = PermissionDenied desc = Access denied to roles: [systemview]

Builds
There are no events before

@ 5 few seconds age

Monitoring

Ownership

Ownership is the model used for resource control. The model is composed of the owner and a list of groups and collaborators

with access to the resource. Groups and collaborators can also have their access to a resource constrained by their access

type. The following table defines the three access types supported:

Description
Read Has access to view or copy the resource. Cannot affect or mutate the resource.
Write Has Read access plus permission to change the resource.
Admin Has Write access plus the ability to delete the resource.

For example, user1 could create a volume and give Read access to groupl1. This means that only user1 can mount the volume.

However, groupt can clone the volume. When a volume is cloned, it is owned by the user who made the request.

Volume access can be viewed by looking at the access metadata of a volume. This can be done using the pxctl volume

access show command.

& RedHat o7

https://docs.portworx.com/concepts/authorization/overview/#3-ownership
https://docs.portworx.com/reference/cli/volume-access/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Over-the-wire Backup Encryption

Portworx Enterprise volumes with cluster-wide or per-volume encryption are one-way Portworx enables encryption
techniques; another example is via PX-Backup. When backing up your Red Hat OpenShift applications, PX-Backup admins can

provide a “Encryption Key” to a PX-Backup backup location so that data is sent encrypted in transit.

NOTE: This section does not cover installation and configuration of PX-Backup. Please refer to the Secure Backup and

Restore for Red Hat OpenShift section for more information.

En[r"‘o"pti{:ln I{E-}f AEEEEEE R R R R R R R R R RN RN ERRE R

@ s3-encrypted

The example using an Amazon S3 compatible backup location as a backup target. The examples below show the in-transit

data when encrypted and unencrypted.

Encrypted:

20:57:12.705491 IP ip-10-0-123-45.us-east-2.compute.internal.42328 > s3.us-east-

2.amazonaws.com.https: Flags [P.], seq 1930:2511, ack 2829, win 1464, length 581
0x0000: 4500 026d 423e 4000 3f06 8440 0000 df57 E..mB>a.?..a...W
0x0010: 34db 54da ab58 01bb b978 blb0 6872 bde2 4.T..X...x..hr..

Ox0020: 5018 05b8 756c OOEO 1703 0302 4000 0O P...ul...... @...
Ox0030: 0000 0000 2aad 9cla e84a ee27 dlec c624*....J."...$
0x0040: 023a da24 b206 36d8 3954 adec b894 a729 .:.$..6.9T.....)

0x0050: b7fe 731c 3f7f 1981 bbb58 4fbe 1f11 2226 ..s.?....X0..."&

Unencrypted:

20:53:17.639164 IP ip-10-0-123-45.us-east-2.compute.internal.57222 > s3.us-east-
2.amazonaws.com.http: Flags [P.], seq 689:1428, ack 678, win 226, length 739: HTTP: PUT /backup-
user-3/db-ops/test-unencrypted-01-3f8ccd4b85224/namespaces.json HTTP/1.1
Ox0020: 5018 OOe2 759a 0OOO 5055 5420 2f70 782d P...u...PUT./px-
0x0030: 6261 636b 7570 2d72 7761 6cbc 6e65 722d backup-user-
0x0040: 332f 6462 2d6f 7073 2f74 6573 742d 756e 3/db-ops/un
0x0050: 656e 6372 7970 7465 642d 3031 2d32 3832 encrypted-01-282
Ox0080: 6363 3462 3835 3232 342f 6eb61l 6d65 7370 cc4b85224/namesp
0x0090: 6163 6573 2eba 736f 6e20 4854 5450 2f31 aces.json.HTTP/1
0x0250: 3d0d 0043 6f6e 7465 6e74 2d54 7970 653a =..Content-Type:
0x0260: 2074 6578 742f 706c 6169 6e3b 2063 6861 .text/plain;.cha
0x0270: 7273 6574 3d75 7466 2d38 0dOa 582d 416d rset=utf-8..X-Am

& RedHat o8

o

Pure
Validated
Design

PURE VALIDATED DESIGN

Data Security Audit on Red Hat OpenShift

Data Security Audit

Lastly, even with purpose-built security for Kubernetes, administrators should audit security by providing security audit logs.
Portworx provides security audit and access logs so that organizations can help protect critical data, identify security

loopholes, create new security policies, and track the effectiveness of security strategies.

The logs are available on each Portworx node at the following locations:

/var/lib/osd/log/security/openstorage-audit.log
/var/lib/osd/log/security/openstorage-access.log

Using Elasticsearch, Kibana, and Filebeat, these audit and access logs can be captured and loaded into Kibana dashboards for

data security audit monitoring on OpenShift.

First, install the Elasticsearch Operators:

oc create -f https://download.elastic.co/downloads/eck/1.8.0/crds.yaml
oc apply -f https://download.elastic.co/downloads/eck/1.8.0/operator.yaml

Then, install Elasticsearch and Kibana with Portworx.

To install Elasticsearch:

kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: elastic-pwx-storage-class
provisioner: kubernetes.io/portworx-volume
parameters:
repl: "3"
openstorage.io/auth-secret-name: px-user-token
openstorage.io/auth-secret-namespace: kube-system
allowVolumeExpansion: true
reclaimPolicy: Retain
kind: StorageClass
apiVersion: storage.k8s.io/vl
metadata:
name: elastic-shared-pwx-storage-class
provisioner: kubernetes.io/portworx-volume
parameters:
openstorage.io/auth-secret-name: px-user-token
openstorage.io/auth-secret-namespace: kube-system
repl: "3"
shared: "true”

& RedHat o9

https://github.com/wallnerryan/pwx-app-catalog/tree/master/tools/portworx/audit
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-openshift-deploy-the-operator.html

PURE VALIDATED DESIGN

allowVolumeExpansion: true
reclaimPolicy:

apiVersion:

kind: Elasticsearch

metadata:

name :

spec:

Retain

elasticsearch

version: 7.14.0

nodeSets:

- name: default

count: 3

podTemplate:

metadata:

volumeClaimTemplates:

labels:

appname: "elastisearch-app”

- metadata:

elasticsearch.k8s.elastic.co/vl

name: elasticsearch-data

spec:

accesslodes:

- ReadWiriteOnce

resources:
requests:
storage:

storageClassName: elastic-pwx-storage-class

config:

5Gi

node.master: true

node.
node.
node.

To install Kibana:

apiVersion:

kind: Kibana

metadata:

name:

spec:

kibana

version: 7.14.0

count:

1

elasticsearchRef:

name:

http:

service:

spec:

type: LoadBalancer

ports:
- name: http
protocol:

& RedHat

data: true
ingest: true
store.allow_mmap:

"elasticsearch™

s
TCP

false

kibana.k8s.elastic.co/vl

o

Pure
Validated
Design

70

o

Pure
Validated
Design

PURE VALIDATED DESIGN

port: 443
targetPort: 5601
podTemplate:
spec:
containers:
- name: kibana
resources:
limits:
memory: 1Gi

cpu: 1

Next, apply a Filebeat ConfigMap and create a Filebeat DaemonSet that targets both the Portworx access and Portworx audit

logs on the Portworx nodes.

apiVersion: vi
kind: ConfigMap
metadata:
name: filebeat-config
namespace: kube-system
labels:
k8s-app: filebeat
data:
filebeat.yml: |-
filebeat.inputs:
- type: log
enabled: true
paths:
- /var/lib/osd/log/security/openstorage-audit.log
- /var/lib/osd/log/security/openstorage-access.log
processors:
- dissect:
tokenizer: "%{time} %{levell}l %{msqg}"
field: "message”
overwrite_keys: true
target_prefix: "pxaudit”
- add_cloud_metadata:
- add_host_metadata:

cloud.id: ${ELASTIC_CLOUD_ID}
cloud.auth: ${ELASTIC_CLOUD_AUTH}

output.elasticsearch:
hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}"]
username: ${ELASTICSEARCH_USERNAME}
password: ${ELASTICSEARCH_PASSWORD}
ssl.certificate_authorities:
- /etc/filebeat/certificates/ca.crt

apiVersion: apps/vl

& RedHat 7

PURE VALIDATED DESIGN

kind: DaemonSet

metadata:

name: filebeat

namespace: kube-system
labels:
k8s-app: filebeat
spec:
selector:
matchLabels:

k8s-app: filebeat

template:
metadata:
labels:
k8s-app: filebeat
spec:
serviceAccountName:

filebeat

terminationGracePeriodSeconds: 30

hostNetwork: true

dnsPolicy: ClusterFirstWithHostNet

containers:

- name: filebeat

image: docker.elastic.co/beats/filebeat:7.14.0

args: |

"

"

]

env:

- name:
value:

- name:

"

-e",

value: "9200"

- name:

value: elastic

- name:

valueFrom:

- name:

secretKeyRef:

name: elasticsearch-es-elastic-user

-c", "/etc/filebeat.yml",

ELASTICSEARCH_HOST
"https://elasticsearch-es-http”
ELASTICSEARCH_PORT

ELASTICSEARCH_USERNAME

ELASTICSEARCH_PASSWORD

key: elastic

value:

- name:

value:

- name:

valueFrom:

fieldRef:

fieldPath:

securityContext:

ru

If using Red Hat OpenShift uncomment this:

nAsUser: 0

NODE _NAME

ELASTIC_CLOUD_ID

ELASTIC_CLOUD_AUTH

spec.nodeName

privileged: true

resources:

limits:

& RedHat

o

Pure
Validated
Design

72

PURE VALIDATED DESIGN

memory: 200Mi
requests:
cpu: 100m
memory: 100Mi
volumelMounts:
- name: cert-ca

mountPath: /etc/filebeat/certificates

readOnly: true
- name: config
mountPath: /etc/filebeat.yml
readOnly: true
subPath: filebeat.yml
- name: data

mountPath: /usr/share/filebeat/data

- name: varlib
mountPath: /var/lib/osd
readOnly: true
- name: varlog
mountPath: /var/log
readOnly: true
volumes:
- name: cert-ca

secret:

secretName: elasticsearch-es-http-certs-public

- name: config
configMap:
defaultMode: 0640
name: filebeat-config
- name: varlib
hostPath:
path: /var/lib/osd
- name: varlog
hostPath:
path: /var/log

data folder stores a registry of read status for all files,

again on a Filebeat pod restart
- name: data
hostPath:

o

Pure
Validated
Design

so we don't send everything

Wlhen filebeat runs as non-root user, this directory needs to be writable by group (g+w).

path: /var/lib/filebeat-data
type: DirectoryOrCreate
apiVersion: rbac.authorization.k8s.io/vil
kind: ClusterRoleBinding
metadata:
name: filebeat
subjects:
- kind: ServiceAccount
name: filebeat
namespace: kube-system
roleRef:
kind: ClusterRole

& RedHat

73

PURE VALIDATED

DESIGN

name: filebeat

apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/vl

kind: RoleBinding

metadata:

name: filebeat

namespace :
subjects:

kube-system

- kind: ServiceAccount

name: filebeat

namespace: kube-system

roleRef:
kind: Role

name: filebeat

apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/vil

kind: RoleBinding

metadata:

name: filebeat-kubeadm-config

namespace :
subjects:

kube-system

- kind: ServiceAccount

name: filebeat

namespace: kube-system

roleRef:
kind: Role

name: filebeat-kubeadm-config

apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/vil
kind: ClusterRole

metadata:

name: filebeat

labels:
k8s-app:
rules:
- apiGroups:
resources:

filebeat

[""] # "" indicates the core API group

- nhamespaces

- pods
- nodes
verbs:
- get
- watch
- list
- apiGroups:
resources:

["apps™”]

- replicasets
verbs: ["get", "list", "watch"]

& RedHat

o

Pure
Validated
Design

74

PURE VALIDATED DESIGN

apiVersion: rbac.authorization.k8s.io/vl

kind: Role
metadata:

name: filebeat

should be the namespace where filebeat is running

namespace :
labels:

kube-system

k8s-app: filebeat

rules:

- apiGroups:

- coordination.k8s.io

resources:

- leases

verbs: ["get", "create", "update"]

apiVersion: rbac.authorization.k8s.io/vil

kind: Role
metadata:

name: filebeat-kubeadm-config

namespace :
labels:
k8s-app:
rules:

kube-system

filebeat

- apiGroups:

resources:

("]

- configmaps

Verify the following items after deployment.

resourcelNames:

- kubeadm-config

verbs: ["get"]

apiVersion:

vl

kind: ServiceAccount

metadata:

name: filebeat

namespace :
labels:
k8s-app:

kube-system

filebeat

The filebeat configuration looks correct
Filebeat DaemonSet is healthy and running on all worker nodes
Elasticsearch is running and healthy

Kibana is running and healthy

o

Pure
Validated
Design

75

PURE VALIDATED DESIGN

Filebeat configuration:

RedHat

= OpenShift

Container Platform

©2 Administrator

Home

Operators

Deployments
Deployment Configs
Stateful Sets
Secrets

Config Maps

Cron Jobs

Jobs

Daemon Sets

Replica Sets
Replication Controllers

Horizontal Pod Autoscalers

Networking

Storage

Filebeat is running.

Project: kube-system =

Pods

Y Filter = Name

filebeat

Config Maps

Project: kube-system =

» Config Map Details

filebeat-config

Details

YAML

Name | ficbeat © | Clear all filters

Name 1 Namespace

@ filebeat-651k @ kube-system
@ filebeat-6gpdh @ kube-system
@ filebeat-hdfhd @ kube-system
@ filebeat-mghqd @ kube-system
@ filebeat-z65t6 @ kube-system

Status

£ Running
£ Running
£ Running
£ Running

£ Running

Ready

il

i1

]

1

i

Restarts

audit.

Owner
ED filebeat
@D filebeat
@D filebeat
@D filebeat

3 filebeat

You are logged in as a temporary administrative user. Update |

Memory

B801IMiB

70.9 MiB

753 MiB

781MIB

74.0 MiB

cPU

0.001 cores

0.000 cores

0.000 cores

0.001 cores

0.001 cores

Created
@ Aug 13, 11:44 am
@ Aug 13, 11:44 am
@ Aug 13, 1144 am
@ Aug 13, 11:45 am

@ Aug 13, 1144 am

o

Pure
Validated
Design

76

PURE VALIDATED DESIGN

Elasticsearch is using Portworx volumes and is running.

Project: kube-system =

Pods
Y Filter « Name w | elest
Name | elest 0| Clear all filters

o

Pure
Validated
Design

Name 1 Namespace Status Ready Restarts Owner Memory cPU Created
@ elasticsearch-es- @D kube-system £ Running " ED elasticsearch-es- 15217 MiB 0034 cores @ Aug 13, 7:52 am
default-0 default
@ elasticsearch-es- @D kube-system £ Running 71 ED elasticsearch-es- 1518.8 MiB 0.034 cores @ Aug 13,752 am
default-1 default
@ elasticsearch-es- @ kube-system £ Running " ED elasticsearch-es- 1,458.2 MiB 0.013 cores @ Aug 13,752 am
default-2 default
Project: kube-system
Persistent Volume Claims Create Persistent Volume Claim
Y Filter ~ Name =~ Searchbyname. /
Name T Namespace Status Persistent Volume Capacity Storage Class
elasticsearch-data- @D kwbe-system @ Bound @Y pvc-5671d53-49ae-4622- 5Gi €D clastic-pwx-storage-class :
elasticsearch-es-default-0 91f1-2486ac128335
elasticsearch-data- kube-system @ Bound @ pvc-1607ecdc-5ff4-4662- 5Gi &P elastic-pwx-storage-class A
elasticsearch-es-default-1 8b8a-23442058b526
elasticsearch-data- kube-system @ Bound @) pvc-26e41268-79e2-43c3- 5Gi @ elastic-pwx-storage-class i
elasticsearch-es-default-2 bfe2-810b82ed62a3
Kibana is up and running.
Project: kube-system +
Pods
Y Filter = Name = l ana|
Name ‘ kibana © | Clear all filters.
Name T Namespace Status Ready Restarts Owner Memory cPU Created
@ kibana-kb- kube-system £ Running " D ibana-kb- 369.2MiB 0.013 cores @ Aug 13, 7:52am
bEebdctde-2wj7 b6cbdcfdc

From here, you will be able to monitor your PX-Security audit logs. Connect to the Kibana Ul by finding the Kibana load

balancer:

oc get svc -n kube-system kibana-kb-http

NAME TYPE CLUSTER-IP
PORT(S) AGE
kibana-kb-http LoadBalancer 172.30.156.232

443:30561/TCP 63d

‘ RedHat

EXTERNAL -IP

aafed2-12345.us-east-2.elb.amazonaws.com

77

o

Pure
Validated
Design

PURE VALIDATED DESIGN

We earlier showed some examples of access denied errors when working with a few PVC create requests. Those requests
used invalid, expired, read-only tokens and are some examples of audit messages that will show up within your dashboards.

See below dashboard examples from the data collected by filebeat.

& msg="Access denied" e...
® msg="Access denied" e...
@ msg="Access denied" e.

® msg="Token is expired” ...

® msg="Access denied” e...

13:38:30

msg="Access denied" amail= groups=" 0O
1" method=valume.dealate name=
rales="[systerm.guest]" subject=

¢ usernames=

Count of records

a msg="Access denied" amail= groups=" 0
1" method =valume.create names=

I I roles="[system.guest]" subject=
usernames=
- - B = B =SS

13:28:00 13-29:00 13:30:00 13:31-00 13-32-00 13-33-00 13

mathod=Authentication
1 Etimestamp per 30 seconds -
P B | msg="Access denied" email= groups=" 0

[I" method=valume.inspect name=
ystem.guest]" subject=
usernames=

o A o Ivarfibjosd/loglsecurity.. | t host.os.type zimux

® fvarfibfosafiogisecurity
t host.os.version 7 (core)

/f'\ € input.type 1o

© log.file.path Jvar [Lib/osd{1og/security/openstorage-audit. log

/\

\
\
\\
\\
\ 0 praudit. Lovel

log.offset 34,053,708

Count of records

\ —r.,,/”\\,,_\/

ge..con reallner-vis

00 13:02:00

@timestamp per 30 seconds

Conclusion

Portworx provides the best-in-class enterprise-grade data services for any application running on Red Hat OpenShift clusters
at any scale. Solving for data protection, security, speed, density, and scale, Portworx not only enables efficient, automatic
provisioning on top of your Red Hat OpenShift clusters, but it also provides advanced features like high availability and
replication, automated capacity management, and dynamic provisioning using application specific StorageClasses (IO_profiles,
IO_priority, etc.). Portworx also provides customers with a complete disaster recovery and business continuity solution with
PX-Backup and PX-DR. PX-DR allows customers to build synchronous and asynchronous DR solutions for their Red Hat
OpenShift clusters. In addition to DR, PX-Backup completes your data protection solution with a Kubernetes-native backup
and restore solution that can be leveraged to build architectures for local or remote backup and restore activities. Portworx
from Pure Storage is the gold standard when it comes to Kubernetes Data Services, and it brings all its capabilities to Red Hat

OpenShift clusters.

‘ Red Hat 8

PURE VALIDATED DESIGN

Additional Resources

e Portworx Blogs

Portworx Demos

How to achieve Disaster Recovery for Red Hat OpenShift

Seamless Disaster Recovery for Red Hat OpenShift

Portworx Enterprise OpenShift Documentation

Portworx Backup OpenShift Documentation

o

Pure
Validated
Design

79

https://portworx.com/blog/
https://youtube.com/portworx
https://portworx.com/blog/openshift-disaster-recovery/
https://portworx.com/wp-content/uploads/2019/11/openshift.pdf
https://docs.portworx.com/portworx-install-with-kubernetes/openshift/operator/
https://backup.docs.portworx.com/install/on-premise/

o

Pure
Validated
Design

PURE VALIDATED DESIGN

About the Authors

Ryan Wallner is head of technical marketing within the cloud native business unit at Pure Storage responsible for defining
solutions around PX Enterprise, backup and disaster recovery for Kubernetes Applications. Ryan has worked in the data
management field for 10 years both as a practitioner in the field of healthcare and as a vendor developing products for

emerging technologies. Ryan joined Pure Storage in October 2020 with Pure’s acquisition of Portworx Inc.

Tim Darnell is a senior technical marketer within the cloud native business unit at Pure Storage. Tim has held a variety of roles
in the two decades spanning his technology career, most recently as a product owner and master solutions architect for
converged and hyper-converged infrastructure targeted for virtualization and container-based workloads. Tim joined Pure
Storage in October of 2021.

purestorage.com 800.379.PURE 9 @ o ﬁ o o PURESTORAGE’

http://purestorage.com/
tel:8003797873
https://www.youtube.com/user/purestorage
https://twitter.com/PureStorage
https://www.linkedin.com/company/pure-storage/
https://www.facebook.com/PureStorage/
mailto:info@purestorage.com
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/patents

	Summary
	Introduction
	Solution Overview
	Solution Benefits
	Red Hat OpenShift
	Portworx
	PX-Store
	PX-Backup
	PX-DR
	PX-Autopilot

	Deployment Options
	Planning, Design, and Prework
	Amazon Web Services
	vSphere On-Prem
	Install Portworx Enterprise on Red Hat OpenShift

	Monitoring Stateful Applications in Red Hat OpenShift
	Using PX-Monitor
	Monitoring Postgres

	Automated Capacity Management on Red Hat OpenShift
	Automated Storage Pool Expansion with FlashArray
	Autopilot Pool Expansion
	Automated PVC Expansion for OpenShift applications

	Secure Backup and Restore for Red Hat OpenShift
	Deployment and Validation
	Secure Backup and Restore with Role-based Access Controls
	Creating a Backup and Restore as an Application User

	Highly Available OpenShift Container Registry with FlashBlade Direct Access
	FlashBlade Direct Access through Portworx
	Provision a FlashBlade Direct Access PV
	Configure and Scale the Red Hat OpenShift Internal Private Registry

	Data Security on Red Hat OpenShift
	Encryption
	Authentication and Authorization
	Ownership
	Over-the-wire Backup Encryption

	Data Security Audit on Red Hat OpenShift
	Data Security Audit

	Conclusion
	Additional Resources
	About the Authors

