
PURE VALIDATED DESIGN

Red Hat OpenShift
with Portworx
Architecting a secure, highly-available Kubernetes data services platform for Red
Hat OpenShift.

PURE VALIDATED DESIGN

 2

Contents
Summary ...3
Introduction ..3
Solution Overview ...4
Solution Benefits ... 5
Red Hat OpenShift ... 5
Portworx ...6
PX-Store .. 7
PX-Backup... 7
PX-DR ... 8
PX-Autopilot .. 8

Deployment Options ...9
Planning, Design, and Prework ...9
Amazon Web Services .. 10
vSphere On-Prem ...12
Install Portworx Enterprise on Red Hat OpenShift.. 14

Monitoring Stateful Applications in Red Hat OpenShift .. 21
Using PX-Monitor ..21
Monitoring Postgres .. 26

Automated Capacity Management on Red Hat OpenShift .. 28
Automated Storage Pool Expansion with FlashArray ... 28
Autopilot Pool Expansion ... 30
Automated PVC Expansion for OpenShift applications ... 33

Secure Backup and Restore for Red Hat OpenShift .. 38
Deployment and Validation ... 39
Secure Backup and Restore with Role-based Access Controls .. 42
Creating a Backup and Restore as an Application User .. 47

Highly Available OpenShift Container Registry with FlashBlade Direct Access... 54
FlashBlade Direct Access through Portworx ... 54
Provision a FlashBlade Direct Access PV ... 55
Configure and Scale the Red Hat OpenShift Internal Private Registry .. 57

Data Security on Red Hat OpenShift ... 60
Encryption ... 60
Authentication and Authorization ... 62
Ownership ... 67
Over-the-wire Backup Encryption ... 68

Data Security Audit on Red Hat OpenShift ... 69
Data Security Audit ... 69

Conclusion .. 78
Additional Resources .. 79
About the Authors.. 80

PURE VALIDATED DESIGN

 3

Summary

As part of digital transformation efforts, organizations are modernizing their applications and
infrastructure by adopting containers and Kubernetes for their applications and leveraging a solution
like Red Hat OpenShift for their infrastructure. Red Hat OpenShift allows organizations to take
advantage of full-stack automated operations, a consistent experience across all environments, and
self-service provisioning for developers that lets teams work together to move ideas from
development to production.

Modern applications are built using containers and orchestrated by Kubernetes, but they still need a layer of persistence. To

run stateful applications on Red Hat OpenShift, organizations need a robust data services platform like Portworx®. Portworx

provides features like replication and high availability, security and encryption, capacity management, disaster recovery, and

data protection to Red Hat OpenShift deployments. Instead of spending resources architecting and managing a custom

Kubernetes storage layer, organizations can accelerate their modernization journeys by adopting a solution like Red Hat

OpenShift with Portworx.

When a solution is designated as a Pure Validated Design (PVD), it means that Pure has integrated and validated our leading-

edge storage technology with an industry-leading application solution platform to simplify deployment, reduce risk, and free

up IT resources for business-critical tasks. The PVD process validates a solution and provides design consideration and

deployment best practices to accelerate deployment. The PVD process assures the chosen technologies form an integrated

solution to address critical business objectives. This document provides design consideration and deployment best practices

for Red Hat OpenShift and Portworx to provide a modern infrastructure platform to run Kubernetes.

Introduction

This document describes the benefits of using Portworx with Red Hat OpenShift to run stateful containerized applications. It is

a validated design that includes different use cases, design considerations, deployment specifics, and configuration best

practices for a developer-ready environment.

This document will cover five different use cases around Red Hat OpenShift described in the Solution Overview section below.

To follow along with the deployment steps listed in this document, an administrator will need to deploy a production-ready

Red Hat OpenShift environment. The Red Hat OpenShift environment must include an OpenShift-installer based installation

with three master nodes and at least three worker nodes. The environment also must have internet access to pull resources

for installation and configuration as this guide does not cover air-gapped deployments. For this validation, we used the

OpenShift installer for vSphere on-premises and OpenShift installer for AWS in cloud. For this validation, we used an Amazon

EBS storage and Pure Storage® FlashArray™ storage backends with Portworx automated CloudDrive provisioning to create

Portworx storage pools for OpenShift, as well as Pure Storage FlashBlade® for a highly- available, internal private registry for

an OpenShift. It's important to note that while this validated design uses EBS and FlashArray, other types of SANs and cloud

infrastructure are supported by Portworx.

https://docs.portworx.com/portworx-install-with-kubernetes/on-premise/airgapped/
https://docs.openshift.com/container-platform/4.8/installing/installing_vsphere/preparing-to-install-on-vsphere.html
https://docs.openshift.com/container-platform/4.8/installing/installing_aws/preparing-to-install-on-aws.html

PURE VALIDATED DESIGN

 4

Solution Overview

This Pure Validated Design is based on using Red Hat OpenShift and Portworx as the data services platform. This solution

covers five use cases that should help administrators deploy and operate a robust Kubernetes stack for their developers.

There are several use cases for the solution, including:

• Stateful application monitoring: Learn how to effectively monitor stateful applications on Red Hat OpenShift with

Portworx using a combination of the OpenShift monitoring stack coupled with the Portworx monitoring stack. This use

case will focus on using PX-Central with PX-Monitor which includes Prometheus and Grafana.

• Automated storage pool and PVC capacity management with PX-Autopilot: Learn how to install and use PX-Autopilot

for capacity management with Red Hat OpenShift. PX-Autopilot allows OpenShift teams to automatically resize PVCs

when they are running out of capacity and scale backend Portworx storage pools to accommodate increasing usage,

including rebalancing volumes across Portworx storage pools when they come unbalanced. This use case uses Pure

Storage FlashArray for the backend storage managed by PX-Autopilot.

• Secure backup and restore with PX-Backup: Learn how to use PX-Backup with secure self-service backup and restore

for stateful and stateless applications on OpenShift. This use case will set up PX-Backup to use clusters with role-based

access controls and user management with enterprise LDAP integrations.

• Highly-available OpenShift container registry with FlashBlade Direct Access: Learn how FlashBlade Direct Access

allows dynamic and on-demand creation of OpenShift persistent volumes (PV) through Portworx. Pure Storage

administrators can now provide their DevOps teams with self-service of FlashBlade NFS-backed PVs simply by creating a

persistent volume claim (PVC) within OpenShift and can be used to configure a highly available internal private registry for

Red Hat OpenShift.

• Role-based access control (RBAC), security audit and encryption with PX-Security: Learn how to effectively install,

configure, and use Portworx PX-Secure to secure application volumes, volume requests, volume access as well as monitor

and audit data management on Red Hat OpenShift.

PURE VALIDATED DESIGN

 5

Solution Benefits

This solution enables organizations to accelerate their adoption of modern applications and Kubernetes by using a best-in-

class Kubernetes offering from Red Hat and the gold standard of Kubernetes data services platform from Portworx. Once you

get started with your Kubernetes adoption journey, you’ll find this solution valuable, as it walks you through the basic use case

of providing persistent storage for containers and advanced use cases like data protection and disaster recovery. If you’re

already running a couple of applications on Kubernetes, you’ll also find this solution valuable, as it helps you take the next step

and adopt a platform that helps ensure business continuity, while also ensuring that you get the best performance and

reliability from your Kubernetes storage layer.

In addition to the consistency provided by Red Hat OpenShift across different on-premises and cloud environments, Portworx

also provides consistency when it comes to Kubernetes storage. Organizations can choose to run their OpenShift clusters on-

premises or in the public cloud, and they can still rely on Portworx to provide the same set of Kubernetes data services for

their applications.

Red Hat OpenShift

The Red Hat OpenShift Container Platform is a consistent hybrid cloud foundation for building and scaling containerized

applications. OpenShift comes with a streamlined, automatic install so you can get up and running with Kubernetes as quickly

as possible. Once installed, Red Hat OpenShift uses Kubernetes operators for push-button, automatic platform updates for the

container host, Kubernetes cluster, and application services running on the cluster.

Red Hat OpenShift Container Platform delivers a single, consistent Kubernetes platform anywhere that Red Hat Enterprise

Linux runs. The platform ships with a user-friendly console to view and manage all your clusters so you have enhanced

visibility across multiple deployments.

Red Hat OpenShift comes with developer-friendly workflows including built-in CI/CD pipelines and source-to-image capability

that enables you to go straight from application code to container. Extend to new technologies—including serverless

applications with Knative, cloud services, and streamlined service communications with Istio and service mesh.

Figure 2: RedHat OpenShift portfolio

https://www.redhat.com/en/technologies/cloud-computing/openshift/container-platform

PURE VALIDATED DESIGN

 6

Using Red Hat OpenShift lets you leverage:

Trusted platform: Red Hat OpenShift builds security checks into your container stack—starting with Red Hat Enterprise Linux

and continuing throughout the application life cycle.

Built-in monitoring: Red Hat OpenShift includes Prometheus, the standard for cloud-native cluster and application monitoring.

Use Grafana dashboards for visualization.

On-demand environments: Self-service for application teams to access approved services and infrastructure, with

centralized management and administration.

Ecosystem integration: Red Hat has worked with hundreds of partners to validate technology integrations with Red Hat

OpenShift, so organizations can make the most of their existing investments.

Centralized policy management: Red Hat OpenShift gives administrators a single place to implement and enforce policies

across multiple teams, with a unified console across all Red Hat OpenShift clusters.

Certified Kubernetes: Red Hat OpenShift is part of the Cloud Native Computing Foundation (CNCF) Certified Kubernetes

program, ensuring compatibility and interoperability between your container workloads.

Portworx

Portworx is a data management solution that serves applications and deployments in Kubernetes clusters. Portworx is

deployed natively within Kubernetes and extends automation capabilities down into the infrastructure to eliminate all the

complexities of managing data. Portworx provides simple and easy-to-consume StorageClasses that stateful applications can

use in a Kubernetes cluster.

Figure 3: Portworx solutions

PURE VALIDATED DESIGN

 7

At the core of Portworx is PX-Store, a software-defined storage platform that works on practically any infrastructure,

regardless of whether it is in a public cloud or on-premises. PX-Store is complemented by:

• PX-Migrate: Easily migrates applications across clusters, racks, and clouds

• PX-Secure: Provides access controls and enables data encryption at a cluster, namespace, or persistent volume level

• PX-DR: Allows applications to have a zero RPO failover across data centers in a metro area as well as continuous backups

across the WAN for even greater protection

• PX-Backup: Allows enterprises to back up and restore the entire Kubernetes application, including data, app

configurations, and Kubernetes objects to any backup location—including S3, Azure Blob, etc.—with the click of a button.

• PX-Autopilot: A service that provides rules-based auto-scaling for persistent volumes and storage pools

PX-Store

PX-Store is a 100% software-defined storage solution that provides high levels of persistent volume density per block device

per worker node. The key features of PX-Store include:

• Storage virtualization: The storage made available to each worker node is effectively virtualized such that each worker

node can host pods that use up to hundreds of thousands of persistent volumes per Kubernetes cluster. This benefits

Kubernetes clusters deployed to the cloud, in that larger volumes or disks are often conducive to better performance.

• Storage-ware scheduling: Stork, a storage-aware scheduler, co-locates pods on worker nodes that host the persistent

volume replicas associated with the same pods, resulting in reduced storage access latency.

• Storage pooling for performance-based quality-of-service: PX-Store segregates storage into three distinct pools of

storage based on performance: low, medium, and high. Applications can select storage based on performance by

specifying one of these pools at the StorageClass level.

• Persistent volume replicas: You can specify a persistent volume replication factor at the StorageClass level. This enables

the state to be highly available across the cluster, cloud regions, and Kubernetes-as-a-service platforms.

• Cloud volumes: Cloud volumes enable storage to be provisioned from the underlying platform without the need to present

storage to worker nodes. PX-Store running on most public cloud providers and VMware Tanzu have cloud volume

capability.

• Automatic I/O path tuning: Portworx provides different I/O profiles for storage optimization based on the I/O traffic

pattern. By default, Portworx automatically applies the most appropriate I/O profile for the data patterns it sees. It does

this by continuously analyzing the I/O pattern of traffic in the background.

• Metadata caching: High-performance devices can be assigned the role of journal devices to lower I/O latency when

accessing metadata.

• Read- and write-through caching: PX-Cache-enabled high-performance devices can be used for read- and write-

through caching to enhance performance.

PX-Backup

Backup is essential for enterprise applications, serving as a core requirement for mission-critical production workloads. The

risk to the enterprise is magnified for applications on Kubernetes where traditional, virtual machine (VM)-optimized data

PURE VALIDATED DESIGN

 8

protection solutions simply don’t work. Protecting stateful applications like databases in highly dynamic environments calls for

a purpose-built, Kubernetes-native backup solution.

Portworx PX-Backup solves these shortfalls and protects your applications’ data, application configuration, and Kubernetes

objects with a single click at the Kubernetes pod, namespace, or cluster level. Enabling application-aware backup and fast

recovery for even complex distributed applications, PX-Backup delivers true multi-cloud availability with key features, like:

• App-consistent backup and restore: Easily protect and recover applications regardless of how they are initially deployed

on, or rescheduled by, Kubernetes.

• Seamless migration: Move a single Kubernetes application or an entire namespace between clusters.

• Compliance management: Manage and enforce compliance and governance responsibilities with a single pane of glass

for all your containerized applications.

• Streamlined Storage Integration: Back up and recover cloud volumes with storage providers including Amazon EBS,

Google Persistent Disk, Azure Managed Disks, and CSI-enabled storage.

PX-DR

PX-DR extends the data protection included in PX-Store with zero RPO disaster recovery for data centers in a metropolitan

area as well as continuous backups across the WAN for an even greater level of protection. PX-DR provides both synchronous

and asynchronous replication, delivering key benefits, including:

• Zero data loss disaster recovery: PX-DR delivers zero RPO failover across data centers in metropolitan areas in addition

to HA within a single data center. You can deploy applications between clouds in the same region and ensure application

survivability.

• Continuous global backup: For applications that span a country—or the entire world—PX-DR also offers constant

incremental backups to protect your mission-critical applications.

PX-Autopilot

PX-Autopilot allows enterprises to automate storage management to intelligently provision cloud storage only when needed

and eliminate the problem of paying for storage when over-provisioned. PX-Autopilot:

• Grows storage capacity on-demand: Automate your applications’ growing storage demands while also minimizing

disruptions. Set growth policies to automate cloud drive and Kubernetes integration to ensure each application’s storage

needs are met without performance or availability degradations.

• Slashes storage costs by half: Intelligently provision cloud storage only when needed and eliminate the problem of

paying for storage when over-provisioned. Scale at the individual volume or entire cluster level to save money and avoid

application outages.

• Integrates with all major clouds and VMware: PX-Autopilot natively integrates with AWS, Azure, and Google as well as

Red Hat OpenShift, enabling you to achieve savings and increase automated agility across all your clouds.

PURE VALIDATED DESIGN

 9

Deployment Options

When creating a specification to deploy Portworx with, you have several options to consider:

• Existing KVDB: For most deployments, you can create a deployment specification with the option of storing Portworx

metadata in a separate etcd cluster. There are two exceptions to this:

- The first scenario is when the PX-DR is used for Kubernetes clusters that are not within the same metro area, meaning

the network round-trip latency between the primary and disaster recovery sites is greater than 10ms.

- The second scenario when a dedicated etcd cluster should be used is for large-scale deployment with 10 or more

worker nodes in which a heavy dynamic provisioning activity takes place.

• Dedicated journal device: A dedicated journal device can be specified to buffer metadata writes.

• Dedicated cache device: A dedicated cache device can be specified to improve performance by acting as a read/write-

through cache.

• Container storage interface (CSI) API compatibility: You can choose the option to deploy Portworx with CSI enabled if

PX-Security is to be used.

• Stork: Stork is a storage-aware scheduler that attempts to co-locate application pods onto the same nodes as the

persistent volumes and persistent volume replicas that it uses. Use Stork if your underlying infrastructure uses either

servers with dedicated internal storage or servers with dedicated network-attached storage appliances.

• Dedicated network: Consider using a dedicated network for storage cluster traffic if the existing network infrastructure

does not support quality-of-service.

Planning, Design, and Prework

This section of the document covers the detailed setup used for Portworx deployment and testing on Red Hat OpenShift. The

requirements for this solution vary depending on the use case as some use cases are deployed in AWS and some are

deployed on-premises with vSphere. The following chart will help in navigating the use case to the environment.

• This document focuses on Portworx 2.8.x and OpenShift 4.7 and 4.8

• PX-Backup installation will be covered in the backup specific use case.

• FlashBlade integration will be covered in the FlashBlade specific use case.

• This document does not cover the full breadth of the Portworx Platform for OpenShift but rather focuses on the subset of

use cases defined. See the Additional Resources below to find out more.

PURE VALIDATED DESIGN

 10

Use Case Clusters Environment

Stateful application monitoring 1 Amazon Web
Services with EBS

RBAC, security audit, and encryption with PX-Security 1 Amazon Web
Services with EBS

Secure backup and restore with PX-Backup 2

Amazon Web
Services with EBS
and S3 backup
location

Automated storage pool and PVC capacity management with PX-Autopilot 1 vSphere on-prem
with FlashArray

Highly available OpenShift container registry with FlashBlade Direct Access 1 vSphere on-prem
with FlashBlade

Table 1. Use cases and clusters required for Portworx Platform for OpenShift

The specific setup, configurations and requirements for AWS and vSphere are shown below, however in both environments

there are also a common set of requirements for running Portworx Data Management and Red Hat OpenShift together:

• A minimum of three master nodes for control plane high availability

• A minimum of three worker nodes dedicated to running Portworx. Portworx needs three (or more) worker nodes for

quorum. While three is the minimum, we recommend five for higher availability of quorum.

• Each worker node needs at least 4 CPU and 8GB of RAM for Portworx + OpenShift, which means that each worker node

will need slightly more than this to run application workloads.

• All Portworx worker nodes should be reachable to one another over local network.

• Portworx should have access to backend storage. This can be DAS, a SAN, or cloud-based volumes.

• To provide backup and restore, a dedicated cluster must be used to host PX-Backup for central control and access to

backup workflows. This is often a separate, centralized Kubernetes or OpenShift cluster.

Below are specific requirements or configurations for AWS or vSphere environments used in this validation.

Amazon Web Services
• Dedicated VPC per OpenShift Cluster

• Elastic Block Store (EBS) used for Portworx CloudDrives storage pool provisioning

• Portworx IAM Policy allowing Portworx to control necessary AWS components

• NTP configuration must be the same across all hosts

• Installed using https://console.redhat.com/openshift/install/aws/installer-provisioned

• Worker nodes with M5.4xlarge 16vCPU, 64GB Ram to host Portworx, OpenShift and Application workloads

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "pxnoderole",

https://docs.portworx.com/cloud-references/auto-disk-provisioning/aws/#aws-requirements
https://console.redhat.com/openshift/install/aws/installer-provisioned

PURE VALIDATED DESIGN

 11

 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:ModifyVolume",
 "ec2:DetachVolume",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:DeleteTags",
 "ec2:DeleteVolume",
 "ec2:DescribeTags",
 "ec2:DescribeVolumeAttribute",
 "ec2:DescribeVolumesModifications",
 "ec2:DescribeVolumeStatus",
 "ec2:DescribeVolumes",
 "ec2:DescribeInstances",
 "autoscaling:DescribeAutoScalingGroups"
],
 "Resource": [
 "*"
]
 }
]
}

The openshift-installer is used to deploy OpenShift 4.x to the AWS environment. The Installation configuration used for this

validation is seen below. You will need to modify this configuration to fit your environment parameters.

apiVersion: v1
baseDomain: openshift.example.com
compute:
- hyperthreading: Enabled
 name: worker
 platform:
 aws:
 type: m5.4xlarge
 replicas: 3
controlPlane:
 hyperthreading: Enabled
 name: master
 platform:
 aws:
 type: m4.xlarge
 replicas: 3
metadata:
 creationTimestamp: null
 name: openshift-cluster-name
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineCIDR: 10.0.0.0/16

PURE VALIDATED DESIGN

 12

 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 aws:
 region: $aws_region
pullSecret: '{REDACTED}'
sshKey: |
 ssh-rsa <REDACTED> <user>@<host>.<domain>

vSphere On-Prem
• vSphere Hosts: This solution is based on four ESXi 7.0.2 hosts.

• vCenter Server: vCenter Server Appliance 7.0.2

• FlashArray//X VMFS Datastore for PX-Autopilot CloudDrives storage pool provisioning

• vSphere Distributed Switch version 7.0.0, with all ESXi hosts connected

• NFS based VMFS Datastore for virtual machine storage

• NTP configuration must be the same across all ESXi hosts and the vCenter server.

• Installed using https://console.redhat.com/openshift/install/vsphere/installer-provisioned

The openshift-installer is used to deploy OpenShift 4.x to the vSphere environment. The Installation configuration used for

this validation is shown below. You will need to modify this configuration to fit your environment parameters. Permissions

required for a vSphere installation are given as an example in the Red Hat OpenShift Platform documentation.

apiVersion: v1
baseDomain: openshift.example.lab
compute:
- architecture: amd64
 hyperthreading: Enabled
 name: worker
 platform:
 vsphere:
 cpus: 6
 coresPerSocket: 2
 memoryMB: 16384
 osDisk:
 diskSizeGB: 120
 replicas: 3
controlPlane:
 architecture: amd64
 hyperthreading: Enabled
 name: master
 platform:
 vsphere:
 cpus: 8
 coresPerSocket: 2

https://console.redhat.com/openshift/install/vsphere/installer-provisioned
https://docs.openshift.com/container-platform/4.9/installing/installing_vsphere/installing-vsphere-installer-provisioned.html

PURE VALIDATED DESIGN

 13

 memoryMB: 16384
 osDisk:
 diskSizeGB: 120
 replicas: 3
metadata:
 creationTimestamp: null
 name: ocp4-cluster
networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OpenShiftSDN
 serviceNetwork:
 - 172.30.0.0/16
platform:
 vsphere:
 apiVIP: 10.1.2.2
 cluster: Workload Cluster 1
 datacenter: Datacenter
 defaultDatastore: data-store-1-nfs
 ingressVIP: 10.1.2.3
 network: vm-network-1234
 password: **********
 username: svc.ocp@openshift.example.lab
 vCenter: vc01.openshift.example.lab
publish: External
pullSecret: '{REDACTED}'
sshKey: |
 ssh-rsa <REDACTED> <user>@<host>.<domain>

To install OpenShift in either AWS or vSphere, point the openshift-installer to the directory where the configuration file lives

and install your cluster. Make sure you install the correct “openshift-installer” binary for the environment (AWS|vSphere).

openshift-install create cluster --dir=/ocp4-clusterconfig-directory/ --log-level=debug

The OpenShift cluster installation will likely take more than thirty minutes, and the installer will output access credentials to the

OpenShift console once complete.

INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export
KUBECONFIG=/root/ocp4-onprem/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.ocp4-
cluster.openshift.example.lab
INFO Login to the console with user: "kubeadmin", and password: "23d2-fghjHHJ-12f5-egg8s"
INFO Time elapsed: 29m18s

PURE VALIDATED DESIGN

 14

Install Portworx Enterprise on Red Hat OpenShift

Each cluster in this validation document ran Portworx Enterprise. Portworx Enterprise was installed on OpenShift using the

Portworx Operator. To install Portworx, first install the Portworx Operator from the OperatorHub within the OpenShift console.

Figure 4. Portworx Operator in the OperatorHub.

Then, navigate to https://central.portworx.com and choose “Portworx Enterprise” to start the process to produce a

StorageCluster spec for the operator.

For AWS

When configuring the Portworx StorageCluster for AWS to use EBS, select AWS in the Storage tab of the spec generation

process. You can accept the defaults or modify the disk sizes and number of disks to use for each Portworx worker node.

Figure 5. Configuring Portworx StorageCluster for AWS

https://docs.portworx.com/portworx-install-with-kubernetes/openshift/operator/
https://central.portworx.com/

PURE VALIDATED DESIGN

 15

This will produce a StorageCluster spec with the following cloud storage configuration:

kind: StorageCluster
apiVersion: core.libopenstorage.org/v1
metadata:
 name: px-cluster-01bd27e1-fa3d-4324-8df3-3d20ee3a6a7a
 namespace: kube-system
 portworx.io/is-openshift: "true"
spec:
 image: portworx/oci-monitor:2.8.0
 imagePullPolicy: Always
 kvdb:
 internal: true
 cloudStorage:
 deviceSpecs:
 - type=gp2,size=150
 kvdbDeviceSpec: type=gp2,size=150
 secretsProvider: k8s
 stork:
 enabled: true
 args:
 webhook-controller: "false"
 autopilot:
 enabled: true
 providers:
 - name: default
 type: prometheus
 params:
 url: http://prometheus:9090
 monitoring:
 telemetry:
 enabled: true
 prometheus:
 enabled: true
 exportMetrics: true
 featureGates:
 CSI: "true"

For FlashArray

When configuring the Portworx StorageCluster for vSphere to use FlashArray, select Pure FlashArray in the Storage tab of the

spec generation process. You can accept the defaults or modify the disk sizes and number of disks to use for each Portworx

worker node.

PURE VALIDATED DESIGN

 16

Figure 6. Configuring Portworx StorageCluster for FlashArray

As the installer indicates, you must install the Pure secret into your OpenShift cluster with the backend FlashArray information.

The example below shows what the configuration looks like with a single FlashArray used for Portworx CloudDrive

provisioning.

Note: Make sure to apply this before applying the Portworx StorageCluster.

cat pure.json
{
 "FlashArrays": [
 {
 "MgmtEndPoint": "10.2.3.123",
 "APIToken": "ae9f7ff4-400a-f005-300a-800022211222"
 }
]
}
oc create secret generic px-pure-secret --namespace kube-system --from-file=pure.json
secret/px-pure-secret created

For this validation we used FlashArray with iSCSI. In order for FlashArray to successfully be used, Portworx nodes must meet

the prerequisites. In this case, we used the following MachineConfig on OpenShift 4.8 to apply our multipath configuration as

well as enable iscsid and multipathd.

Note: The source data string after the line "source: data:text/plain;charset=utf-8;base64," for the multipath.conf is

base64 encoded. You may need or want to update the multipath.conf file to suite your environments needs, to do this,

you can run "echo '<string>' | base64 -d" to decode the config file. If you want to update it, make your changes and re-

encode it using base64.

https://docs.portworx.com/cloud-references/auto-disk-provisioning/pure-flash-array/#prerequisites

PURE VALIDATED DESIGN

 17

apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
 labels:
 machineconfiguration.openshift.io/role: worker
 name: 99-worker-enable-iscsid-mpath
spec:
 config:
 ignition:
 version: 3.2.0
 storage:
 files:
 - path: /etc/multipath.conf
 mode: 0644
 overwrite: false
 contents:
 source: data:text/plain;charset=utf-
8;base64,IyBkZXZpY2UtbWFwcGVyLW11bHRpcGF0aCBjb25maWd1cmF0aW9uIGZpbGUKCiMgRm9yIGEgY29tcGxldGUgbGlzdCB
vZiB0aGUgZGVmYXVsdCBjb25maWd1cmF0aW9uIHZhbHVlcywgcnVuIGVpdGhlcjoKIyAjIG11bHRpcGF0aCAtdAojIG9yCiMgIyB
tdWx0aXBhdGhkIHNob3cgY29uZmlnCgojIEZvciBhIGxpc3Qgb2YgY29uZmlndXJhdGlvbiBvcHRpb25zIHdpdGggZGVzY3JpcHR
pb25zLCBzZWUgdGhlCiMgbXVsdGlwYXRoLmNvbmYgbWFuIHBhZ2UuCgpkZWZhdWx0cyB7Cgl1c2VyX2ZyaWVuZGx5X25hbWVzIG5
vCglmaW5kX211bHRpcGF0aHMgeWVzCgllbmFibGVfZm9yZWlnbiBeJAp9CgpibGFja2xpc3RfZXhjZXB0aW9ucyB7CiAgICAgICA
gcHJvcGVydHkgKFNDU0lfSURFTlRffElEX1dXTikKfQoKYmxhY2tsaXN0IHsKfQo=
 systemd:
 units:
 - enabled: true
 name: iscsid.service
 - name: multipathd.service
 enabled: true

oc create -f iscsi-mpath-mc.yaml
machineconfig.machineconfiguration.openshift.io/99-worker-enable-iscsid-mpath created

The OpenShift worker nodes will be configured one by one and may become NotReady for a short period of time while this

occurs. It is best to monitor the OpenShift master and worker nodes until this is done as well as confirm all cluster operators

are healthy before continuing to install Portworx.

For FlashBlade

There are a few prerequisites you need to be aware of when implementing FlashBlade Direct Access. Since we are installing

into OpenShift, we also need to open TCP ports 17001 through 17020 on all master and worker nodes in the OpenShift cluster.

Once we have these requirements met, we need to prepare OpenShift for the Portworx installation. Portworx needs to be

aware that we want to use FlashBlade Direct Access during installation and needs information about the FlashBlades we want

to use. To provide this information, we’ll create a file named pure.json that contains the information about our FlashBlade and

then create a secret in OpenShift prior to installing Portworx. The information in the JSON file includes:

https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/pure-flashblade/#prerequisites
https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/pure-flashblade/#prerequisites

PURE VALIDATED DESIGN

 18

• Management endpoint IP: The FlashBlade IP address that Portworx will interact with for API and provisioning operations

• API token: The API token generated on the FlashBlade that we will use

• NFS endpoint IP: The IP address on the FlashBlade that the NFS filesystem will be exported on

{
 "FlashBlades": [
 {
 "MgmtEndPoint": "10.0.0.5",
 "APIToken": "T-74419f51-8c0e-1e42-aa34-1460a2cf80e1",
 "NFSEndPoint": "10.0.0.4"
 }
]
}

Once we have the pure.json file created, we can login to our OpenShift cluster and create a secret from it in the kube-system

namespace named “px-pure-secret”. This is how Portworx will detect we want to use FlashBlade Direct Access during

installation:

oc create secret generic px-pure-secret --namespace kube-system --from-file=pure.json

Now that the px-pure-secret which contains information about our FlashBlade has been created, we can install the Portworx

Enterprise Operator and create our Portworx cluster.

Common to AWS, FlashArray, or FlashBlade

For any OpenShift environment, select “OpenShift 4+” on the “Customize” tab within the spec generator.

Note: For PX-Security-enabled clusters you can select “Security Settings” and enable it. However, this guide will show

how to enable security post-installation within a Portworx cluster on OpenShift.

Note: For PX-Monitoring, select Enable Monitoring in the Advanced Settings drop down. This will be used in the

monitoring validation use case within this document.

PURE VALIDATED DESIGN

 19

Figure 7. Customizing Openshift 4+

When the StorageCluster is applied, Portworx should take a few minutes to completely become online. You can check the

status of the Portworx StorageCluster within the installed operators tab of your kube-system namespace. Portworx should

report Phase: Online.

Figure 8: Portworx StorageCluster details

You can monitor the installation status of Portworx by watching the pods in the kube-system namespace and waiting until they
are all ready by issuing the command watch oc get pods -n kube-system:

PURE VALIDATED DESIGN

 20

 Figure 9: Watching the pods in the kube-system

We can also verify our Portworx cluster health by running pxctl status from within one of the OpenShift worker nodes

where Portworx is installed. If you installed via AWS, your backing drives should be EBS and if you installed with FlashArray,

your backing drives should be FlashArray LUNs.

Figure 10: Running pxctl status

PURE VALIDATED DESIGN

 21

Monitoring Stateful Applications in Red Hat OpenShift

Using PX-Monitor

The Red Hat OpenShift monitoring stack uses tools such as Prometheus, Alertmanager, Node Exporter, and Grafana, much like

the Portworx monitoring stack with PX-Central and PX-Monitor. These industry-standard tools allow for a deep level of

monitoring capabilities along with the flexibility of configuration for Kubernetes environments.

To get started, when you create the Portworx cluster spec on https://central.portworx.com make sure to select the Red Hat

OpenShift box as well as Enable Monitoring under Advanced Settings. This will make sure your Portworx cluster is set up with

the Prometheus operator that enables PX-Monitor to connect.

Figure 11: Enabling monitoring

You can verify that prometheus is installed with your Portworx installation by navigating to the kube-system namespace and

viewing the Deployments. There should be a px-prometheus-operator installed.

Figure 12: Viewing the deployments

Once your Portworx cluster is installed, you will need to install PX-Central UI and PX-Monitor to use PX-Monitor.

PX-Central UI: You can install this on either the same or different cluster by choosing the License Server and Monitoring or

PX-Backup spec generation from https://central.portworx.com. Both sets of instructions will enable the helm chart to install

PX-Central.

First add the needed permissions to the central namespace:

https://docs.openshift.com/container-platform/4.8/monitoring/understanding-the-monitoring-stack.html
https://docs.portworx.com/portworx-install-with-kubernetes/operate-and-maintain-on-kubernetes/monitoring/using-px-central/
https://central.portworx.com/
https://central.portworx.com/

PURE VALIDATED DESIGN

 22

$ oc adm policy add-scc-to-user restricted system:serviceaccount:central:default
$ oc adm policy add-scc-to-user restricted system:serviceaccount:central:pxcentral-apiserver
$ oc adm policy add-scc-to-user restricted system:serviceaccount:central:px-keycloak-account
$ oc adm policy add-scc-to-user restricted system:serviceaccount:central:px-backup-account

Then install PX-Central into your OpenShift cluster:

$ helm repo add portworx http://charts.portworx.io/ && helm repo update

$ helm install px-central portworx/px-central --namespace central --create-namespace --version 2.0.1
--set persistentStorage.enabled=true,persistentStorage.storageClassName="px-
replicated",pxbackup.enabled=true

PX-Monitor: This can be installed by navigating to https://central.portworx.com and selecting License Server and Monitoring

then filling in the needed information. Make sure to select the Monitoring on PX-Central box.

Figure 13: License and server monitoring with monitoring on PX-Central

Click Next. Make sure to provide the PX-Central UI installed in step one. This endpoint should be Ingress, Load Balancer, or

IP:PORT. You can retrieve this service by using the following command:

oc get svc -n central px-central-ui

https://central.portworx.com/

PURE VALIDATED DESIGN

 23

Once you provide the PX-Central UI Endpoint, follow the command prompts to update your central install to include PX-

Monitor.

Figure 14: Update the central install to include PX-Monitor

Once PX-Central and PX-Monitor are connected, head over to the Red Hat OpenShift dashboard and navigate the central

namespace where the px-central-ui service is available. This service will open the PX-Central interface for backup and

monitoring.

PURE VALIDATED DESIGN

 24

Figure 15: Red Hat OpenShift dashboard

Figure 16: px-central-ui service details dashboard

From here, log in with the admin credentials. Then, to connect your Portworx cluster to PX-Central click Add PX Cluster.

Figure 17: Adding a PX cluster

Then, fill out the cluster information with the StorageCluster name for the name and the portworx-service service as input.

oc get svc -n kube-system portworx-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
portworx-service ClusterIP 172.30.3.186 <none> 9001/TCP,9019/TCP,9020/TCP,9021/TCP
20h

oc get storagecluster -n kube-system
NAME CLUSTER UUID STATUS
VERSION AGE
px-cluster-01bd27e1-fa3d-4324-8df3-3d20ee3a6a7a 475ca5c3-c490-4123-a2be-d9baa834583e Online
2.8.0 20h

Provide the KubeConfig as well.

PURE VALIDATED DESIGN

 25

$ oc config view --flatten --minify

Figure 18: Adding the PX cluster

Once you provide this information, click Submit. From here, your cluster should be added successfully, and you can select

Metrics to bring you the full Grafana monitoring dashboards.

Figure 19: Monitoring dashboard

From here, the Portworx cluster, nodes, backup, and volumes dashboards can allow you to monitor your data management

components of the Red Hat OpenShift cluster.

PURE VALIDATED DESIGN

 26

Figure 20: Portworx cluster dashboard

Monitoring Postgres

To monitor a specific stateful application, navigate to your application such as the Postgres pod seen below, which is using a

StorageClass that uses the Portworx provisioner. From here, copy the PersistentVolumeClaim name that the database is using.

Figure 21: PersistentVolumeClaim on the Persistent Volume Claim Details screen

Then navigate to the Portworx Volume Dashboard.

PURE VALIDATED DESIGN

 27

Figure 22: Portworx Volume Dashboard

Paste the PersistentVolumeClaim name into the “Volume Name” box.

Figure 23: Adding the PersistentVolumeClaim to the Portworx Volume Dashboard

Now you should be able to monitor Postgres volume metrics from the Grafana Dashboard.

Figure 24. Monitoring the Postgres volume metrics from the Grafana Dashboard

PURE VALIDATED DESIGN

 28

PX-Monitor and PX-Central can simplify management, monitoring, and metadata services for one or more Portworx clusters on

Red Hat OpenShift. Using this single pane of glass, you can easily manage the state of your hybrid- and multi-cloud OpenShift

applications with embedded monitoring and metrics directly in the Portworx user interface.

Automated Capacity Management on Red Hat OpenShift

Automated Storage Pool Expansion with FlashArray

When Portworx is deployed to Red Hat OpenShift, you can configure it with automated disk provisioning for Pure Storage

FlashArray.

Figure 25: Automated Storage Pool Expansion with FlashArray

This allows Kubernetes administrators to configure Portworx with automation of LUN creation and attachment for Portworx

storage pools available to OpenShift. This also allows administrators to provision only as much storage as they need, as PX-

Autopilot will allow them to automatically scale when cluster usage rises.

To enable Pure Storage FlashArray LUNs to connect over iSCSI, the OpenShift cluster must first be configured with iscsid and

multipathd and have the iscsi-initiator-utils installed.

Please refer to the Planning, Design, and Pre-Work section on how to prep the OpenShift cluster for Portworx with Pure

FlashArray for CloudDrives.

If you’ve followed the Planning, Design, and Pre-Work section for FlashArray, you will end up with a StorageCluster spec like
the below example spec. Make note of the annotations, cloudStorage, and env sections showing that in this case we are

installing for OpenShift using FlashArray with Portworx storage pool cloud storage devices of 150GB each to begin with. This

https://docs.portworx.com/cloud-references/auto-disk-provisioning/pure-flash-array/
https://docs.portworx.com/cloud-references/auto-disk-provisioning/pure-flash-array/

PURE VALIDATED DESIGN

 29

environment is also specifically using iSCSI as our SAN type to deliver iSCSI volumes to our Portworx nodes where our

Portworx virtual storage pools will be created.

kind: StorageCluster
apiVersion: core.libopenstorage.org/v1
metadata:
 name: px-cluster-d4e65c6a-09a2-4222-87c1-b2ef36836ab8
 namespace: kube-system
 annotations:
 portworx.io/is-openshift: "true"
spec:
 image: portworx/oci-monitor:2.8.0
 imagePullPolicy: Always
 kvdb:
 internal: true
 cloudStorage:
 deviceSpecs:
 - size=150
 kvdbDeviceSpec: size=32
 secretsProvider: k8s
 stork:
 enabled: true
 args:
 webhook-controller: "false"
 autopilot:
 enabled: true
 providers:
 - name: default
 type: prometheus
 params:
 url: http://prometheus:9090
 monitoring:
 telemetry:
 enabled: true
 prometheus:
 enabled: true
 exportMetrics: true
 featureGates:
 CSI: "true"
 env:
 - name: PURE_FLASHARRAY_SAN_TYPE
 value: "ISCSI"

As stated in the Planning, Design, and Pre-Work section, make sure you install the Portworx Enterprise operator prior to

applying the StorageCluster spec above. Once the StorageCluster spec is applied, you will see the automatically provisioned

150GB cloud drives defined in the StorageCluster spec appear in your FlashArray backend.

https://operatorhub.io/operator/portworx

PURE VALIDATED DESIGN

 30

Figure 26: FlashArray showing the PX cloud drives

Portworx should also become healthy within the OpenShift cluster during this time. You may choose to check the status of
Portworx by running pxctl status from within one of the OpenShift worker nodes where Portworx is installed.

Before continuing to the next step, we advise checking to make sure AutoPilot is running. To do so, run the following

command. Autopilot should be in Running state with 1/1 Ready.

oc get po -n kube-system -l name=autopilot
NAME READY STATUS RESTARTS AGE
autopilot-6658db45c8-httfk 1/1 Running 0 18h

Autopilot Pool Expansion

For PX-Autopilot to be able to expand the backend FlashArray storage pool once its usage crosses a threshold condition, we

need to set up an Autopilot Rule first.

NOTE: PX-Autopilot pool expansion is only a PX-Enterprise support feature and is not available within PX-Essentials.

The below autopilot rule can be applied to the OpenShift cluster using oc apply -f rule.yaml. The rule below states the

following conditions and actions:

• Condition: If the pool capacity on any given Portworx node is above 50%

• Condition: Pools on any given Portworx node should not exceed 1TB in size.

• Action: Scale the pool by 50% as long the pool will remain at or below 1TB; scale by adding a disk

cat rule.yaml
apiVersion: autopilot.libopenstorage.org/v1alpha1
kind: AutopilotRule
metadata:
 name: pool-expand
spec:
 enforcement: required
 ##### conditions are the symptoms to evaluate. All conditions are AND'ed
 conditions:

PURE VALIDATED DESIGN

 31

 expressions:
 # pool available capacity less than 50%
 - key: "100 * (px_pool_stats_available_bytes/ px_pool_stats_total_bytes)"
 operator: Lt
 values:
 - "50"
 # pool total capacity should not exceed 1TB
 - key: "px_pool_stats_total_bytes/(1024*1024*1024)"
 operator: Lt
 values:
 - "1000"
 ##### action to perform when condition is true
 actions:
 - name: "openstorage.io.action.storagepool/expand"
 params:
 # resize pool by scalepercentage of current size
 scalepercentage: "50"
 # when scaling, add disks to the pool
 scaletype: "add-disk"

After applying the autopilot rule, you may look at the OpenShift events and search for the AutopilotRule object with the name

pool-expand. This will show each of the pools being initialized to normal, as they are all within the threshold of 50%. Note that

we see three events because there are three storage nodes within one storage pool each in this cluster.

oc get events --field-selector involvedObject.kind=AutopilotRule,involvedObject.name=pool-expand --
all-namespaces --sort-by .lastTimestamp

Every 2.0s: oc get events --field-selector
involvedObject.kind=AutopilotRule,involvedObject.name=pool-expand --all-namespaces --sort-by
.lastTimestamp Thu Sep 9 11:07:23 2021

NAMESPACE LAST SEEN TYPE REASON OBJECT MESSAGE
default 7m51s Normal Transition autopilotrule/pool-expand rule: pool-
expand:a1b09e28-f06b-4b56-bea5-064a9b20aa97 transition from Initializing => Normal
default 7m51s Normal Transition autopilotrule/pool-expand rule: pool-
expand:afa5aec4-bcba-457d-8be0-6e2d9d2af9cb transition from Initializing => Normal
default 7m51s Normal Transition autopilotrule/pool-expand rule: pool-
expand:b6da8879-2956-4cf5-af0b-11cc009fe95e transition from Initializing => Normal

As the pool begins to fill due to usage, the events will show the state change from “Normal” to “Triggered.” This indicates that

Autopilot has detected a rule condition within the inference engine. Once a pool is triggered, it will be placed into

ActiveActionPending, then ActiveActionInProgress. During this time, Portworx will make sure to only expand a single storage

pool and rebalance the storage pools one at a time, so the cluster remains healthy and responsive.

PURE VALIDATED DESIGN

 32

Figure 27: State change from “Normal” to “Triggered”

For a given Portworx node that is connected to the backend FlashArray, you should see an additional disk (three instead of

two) added to the host, indicating that Autopilot performed the expand operation by adding a disk.

Figure 28: Additional disk

To check the progress of the pool expansion, you can look at the nodes’ Portworx logs and make note of the “Expansion is

already in progress for pool” log entries and the percentage that the expansion has left to rebalance.

Figure 29: Expansion is already in progress for pool” log entry.

Once this operation is complete, you may use the pxctl service pool show command to see the expand operation has

occurred and that there is an additional disk based on the AutopilotRule.

PURE VALIDATED DESIGN

 33

Figure 30: Checking pool expansion completion status

The events will also show the triggered condition as ActiveActionsTaken to indicate the “expand” operation is complete and

that the action has been taken.

Figure 31. ActiveActionsTaken

Once this is done, Autopilot will resume watching for the condition to be true for the pools and their new sizes. Autopilot rules

continue to work, even after they have been triggered, as long as the action will not meet the maximum limit on the size of the

pool. If the maximum size limit of the pool has been met, the action will increase it to only meet this maximum size.

Automated PVC Expansion for OpenShift applications

PX-Autopilot can also be used to dynamically expand PersistentVolumeClaims on demand without any application downtime.

The workflow is like that of setting up a storage pool rule, however, this rule will be targeting a specific PVC instead. To get

started we need an application to work with.

First, create a namespace that will be used to host the application. In this case, we apply a label to the namespace because

PX-Autopilot can target specific namespace labels for PVC rules.

PURE VALIDATED DESIGN

 34

oc create ns pg1
oc label ns pg1 type=db

To create an autopilot rule, define the AutoPilotRuie YAML object and apply it to the OpenShift cluster. This rule targets the

Postgres app in the “db” labeled namespaces and will resize PVCs when they reach 70% capacity.

cat posgtres-autopilot-rule.yaml
apiVersion: autopilot.libopenstorage.org/v1alpha1
kind: AutopilotRule
metadata:
 name: volume-resize
spec:
 ##### selector filters the objects affected by this rule given labels
 selector:
 matchLabels:
 app: postgres
namespaceSelector:
 matchLabels:
 type: db
 ##### conditions are the symptoms to evaluate. All conditions are AND'ed
 conditions:
 # PVC usage should be less than 70% (30% remaining)
 expressions:
 - key: "100 * (px_volume_usage_bytes / px_volume_capacity_bytes)"
 operator: Gt
 values:
 - "70"
 ##### action to perform when condition is true
 actions:
 - name: openstorage.io.action.volume/resize
 params:
 # resize volume by scalepercentage of current size
 scalepercentage: "100"
 # volume capacity should not exceed 400GiB
 maxsize: "400Gi"

oc create -f postgres-autopilot-rule.yaml

A sample Postgres application can be used below. Note that the StorageClass used for the applications storage must set

allowVolumeExpansion: true for expansion to occur.

cat pgbench.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: postgres-pgbench-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "2"

PURE VALIDATED DESIGN

 35

allowVolumeExpansion: true

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pgbench-data
 labels:
 app: postgres
spec:
 storageClassName: postgres-pgbench-sc
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 10Gi

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
 name: pgbench-state
spec:
 storageClassName: postgres-pgbench-sc
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

apiVersion: apps/v1
kind: Deployment
metadata:
 name: pgbench
 labels:
 app: postgres
spec:
 selector:
 matchLabels:
 app: postgres
 strategy:
 rollingUpdate:
 maxSurge: 1
 maxUnavailable: 1
 type: RollingUpdate
 replicas: 1
 template:
 metadata:
 labels:
 app: postgres
 spec:
 securityContext:
 fsGroup: 1000649999
 runAsUser: 1000649999

PURE VALIDATED DESIGN

 36

 schedulerName: stork
 containers:
 - image: postgres:13.3
 name: postgres
 ports:
 - containerPort: 5432
 env:
 - name: POSTGRES_USER
 value: pgbench
 - name: POSTGRES_PASSWORD
 value: superpostgres
 - name: PGBENCH_PASSWORD
 value: superpostgres
 - name: PGDATA
 value: /var/lib/postgresql/data/pgdata
 securityContext:
 fsGroup: 1000649999
 runAsUser: 1000649999
 volumeMounts:
 - mountPath: /var/lib/postgresql/data
 name: pgbenchdb
 - name: pgbench
 image: portworx/torpedo-pgbench:latest
 imagePullPolicy: "Always"
 env:
 - name: PG_HOST
 value: 127.0.0.1
 - name: PG_USER
 value: pgbench
 - name: SIZE
 value: "70"
 securityContext:
 fsGroup: 1000649999
 runAsUser: 1000649999
 volumeMounts:
 - mountPath: /var/lib/postgresql/data
 name: pgbenchdb
 - mountPath: /pgbench
 name: pgbenchstate
 volumes:
 - name: pgbenchdb
 persistentVolumeClaim:
 claimName: pgbench-data
 - name: pgbenchstate
 persistentVolumeClaim:
 claimName: pgbench-state

oc create -f pgbench.yaml -n pg1

After applying the Postgres application to the cluster, verify app is creating data by navigating to the pg1 project in the

OpenShift console and clicking on the pgbench pod and viewing the logs. You should see pgbench running in the background

to fill up the PVC disk space.

PURE VALIDATED DESIGN

 37

Figure 32: Log for pgbench

You may watch the PVCs within the OpenShift console to view their sizes increasing as data is added.

Figure 33: PVCs within the OpenShift console

Next, watch for autopilot rule events by filtering by the specific volume-resize AutoPilotRule.

oc get events --field-selector involvedObject.kind=AutopilotRule,involvedObject.name=volume-resize -
-all-namespaces --sort-by .lastTimestamp

PURE VALIDATED DESIGN

 38

Figure 34: AutoPilotRule

Verify the PVC expands from 10G to 20G when first triggered. Now your PVC has double the capacity without the need for

editing YAML or for a storage admin to take manual action.

Figure 35: PVC capcity

Secure Backup and Restore for Red Hat OpenShift

This use case focuses on secure data protection for containerized applications running on Red Hat OpenShift clusters.

Portworx PX-Backup provides a modern Kubernetes-native backup and restore solution for OpenShift clusters. When it comes

to modern applications, traditional backup solutions won’t work for the following reasons:

• Traditional backup is machine-focused: Traditional backup solutions talk to the underlying machines (bare metal hosts

or virtual machines) and protect them as the primary unit. But they don’t consider the applications running on top.

Containerized applications are distributed in nature; each machine might have containers that might belong to different

applications running on top, and each application might have containers that are spread across multiple machines. If you

are just protecting underlying machines without understanding how modern applications are deployed and run in

production, you might not be able to restore your applications as expected when needed.

• Traditional backup doesn’t speak Kubernetes: Traditional backup solutions are more focused on connecting directly

with the physical servers or connecting to virtualization managers like vCenter server and inventorying all the different

virtual machines running on top of it. A production Kubernetes cluster consists of multiple control plane nodes and multiple

worker nodes that are responsible for running your application using constructs like Kubernetes pods, deployments,

services, configmaps, etc. If your backup solution is not able to understand and identify these constructs, you might not

be able to restore your applications.

• Traditional backup is centrally managed: Traditional backup solutions don’t have self-service or role-based access

control built in. They are more focused on enabling the backup administrator or infrastructure administrator to create

backup schedules and jobs and ensure that all the jobs are completed successfully. With modern applications, you need a

more distributed approach, where the backup administrator will add the backup locations and create backup schedules.

But individual application owners or developers might best know how to protect a particular application and would prefer

self-service access and control over how their application is protected.

PURE VALIDATED DESIGN

 39

PX-Backup provides a modern data protection solution for Red Hat OpenShift that meets these specifications:

• Container-granular: PX-Backup runs on top of a Red Hat OpenShift cluster. It can run on the same OpenShift cluster as

your applications, or it can run on a dedicated OpenShift cluster. It helps you protect all the containers that are part of

your application, not just the hosts that are running those containers.

• Kubernetes namespace aware: PX-Backup talks to the Kubernetes API server, and it can identify all the namespaces

configured inside the Red Hat OpenShift clusters. It also identifies all the different Kubernetes objects from pods,

deployments, services, config maps, secrets, etc. and helps you backup everything that constitutes your containerized

application.

• Application consistent: Containerized stateful applications are distributed in nature, so it is essential to have a backup

solution that can help take application consistent snapshot, and not just crash consistent snapshots. PX-Backup allows

administrators to create pre- and post-backup rules that can be associated with backup jobs for your distributed

applications.

• Capable of backing up data and app config: PX-Backup allows you to back up your entire application end to end. This

includes all the Kubernetes objects, application configurations, and persistent volumes that store your application data.

• Optimized for the multi-cloud world: PX-Backup works with all Kubernetes distributions, so you can run your applications

in Red Hat OpenShift clusters on-prem and restore them to an Amazon EKS or a Google Kubernetes Engine cluster or

another Red Hat OpenShift cluster running in AWS or Azure.

Deployment and Validation

To install PX-Backup on Red Hat OpenShift, use the following steps:

NOTE: PX-Backup is often installed in a separate “management” cluster to provide central access for backups on one or

more clusters. You may install in an existing OpenShift cluster; however, it is recommended to install in a central

location for multi-user access.

1. Install Helm CLI wherever you have access to the oc command line for OpenShift.

2. Navigate to PX-Central and create a New Spec. Select PX-Backup and click Next.

3. Enter a namespace that you want to install all the PX-Backup components. Select Helm3 and Cloud. Enter the name of the

StorageClass that you want to use to install PX-Backup; in this example we installed PX-Backup on an OpenShift cluster

which had Portworx installed, so the “px-replicated” StorageClass is available. Click Next.

https://helm.sh/docs/intro/install/
https://central.portworx.com/

PURE VALIDATED DESIGN

 40

4. Read through the license agreement and click Agree.

5. Follow the two-step process to install PX-Backup on your Red Hat OpenShift cluster:

helm repo add portworx http://charts.portworx.io/ && helm repo update
helm install px-central portworx/px-central --namespace px-backup --create-namespace --version 2.0.1
--set persistentStorage.enabled=true ,persistentStorage.storageClassName="px-
replicated",pxbackup.enabled=true

6. You can monitor the PX-Backup deployment using the following commands:

kubectl get pods -n px-backup -w
kubectl get po --namespace px-backup -ljob-name=pxcentral-post-install-hook -o wide | awk '{print
$1, $3}' | grep -iv error
kubectl get svc -n px-backup

7. To access the Backup UI from an OpenShift Route:

a. Open the web console, go to Networking > Routes, and then select the Create Route button.

b. On the Create Route page, configure your route by populating the following fields:

c. Name: enter a descriptive name

d. Hostname: specify a public hostname. If you leave this field empty, OpenShift will generate a hostname.

e. Path: leave this field unchanged.

f. Service: choose px-backup-ui from the drop-down list.

g. Target Port: choose 80 -> 8080

h. When you’ve finished configuring your route, select the Create button.

PURE VALIDATED DESIGN

 41

i. OpenShift now displays a link to the PX-Backup UI on the Routes page. To access PX-Backup, select that link.

8. Log into the PX-Backup interface using the default credentials (admin/admin). You will be prompted to set a new password

on your first login.

9. Once you log in, you can configure cloud accounts, backup locations, schedule policies and backup rules.

a. Cloud accounts: These credentials allow PX-Backup to authenticate with clusters for the purpose of taking backups and

restoring to them. They also add and manage backup locations where backup objects are stored.

b. Backup locations: PX-Backup supports AWS S3, Azure Blob Storage, Google Cloud Object Storage, and any S3

compliant object store as the backup repository to store your backup objects.

c. Schedule policies: PX-Backup allows administrators to create periodic, hourly, daily, weekly, and monthly schedule

policies that will be leveraged by the application owners to create their backup jobs.

d. Backup rules: To ensure application consistency, PX-Backup allows administrators to create pre- and post-backup rules

for their applications. Stateful and distributed applications like Cassandra, Elasticsearch, MongoDB, MySQL, PostgreSQL,

and others need these backup rules to take application consistent snapshots.

10. You can add your Red Hat OpenShift clusters using the PX-Backup UI. Click on Add Cluster on the top right. Enter the
name of the OpenShift cluster. Copy the kubectl command and run it against your OpenShift cluster. Select Others and

click Submit. If you are connecting PX-Backup to a cluster not running Portworx, you will have to install Stork using the

command below:

curl -fsL -o stork-spec.yaml "https://install.portworx.com/2.6?comp=stork&storkNonPx=true"
kubectl apply -f stork-spec.yaml

https://backup.docs.portworx.com/use-px-backup/backup-stateful-applications/

PURE VALIDATED DESIGN

 42

11. Once your Red Hat OpenShift cluster is added, you can start backing up your applications using the PX-Backup UI.

Secure Backup and Restore with Role-based Access Controls

As part of this document, we validated using PX-Backup with Red Hat OpenShift by enabling PX-Backup Security and Role

Based Access Controls for users.

Figure 36: Validated design using PX-Backup with Red Hat OpenShift

Manage Users

Once logged into PX-Backup as the administrator, PX-Backup Security is accessible from the bottom left corner menu.

Figure 37: PX-Backup Security

From the PX-Backup Security view, you will be able to handle the following tasks:

• Manage imported or created backup users and groups

• Manage, create, or delete backup roles

• Apply role mappings to backup users and groups

PURE VALIDATED DESIGN

 43

To add users to a PX-Backup installation, you will need to access the Keycloak administration console deployed with PX-

Backup. First, identify the Keycloak service by running the following commands on the Red Hat OpenShift cluster that PX-

Backup is deployed to:

$ kubectl get svc pxcentral-keycloak-http -n central
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
pxcentral-keycloak-http NodePort 10.104.180.137 <none> 80:30544/TCP,8443:32488/TCP
33d

In the above scenario, the Keycloak service will be available at the NodePort of 32488. You may also choose to use

LoadBalancers or OpenShift routes to expose these services.

https://<URL>:32488/auth

Once you access the Keycloak administration console, click on “Administration Console.” This will prompt you for the PX-

Backup admin user and password.

Figure 38: Keycloak interface

LDAP Integration

Once logged in, you may manage users manually by navigating to the Users section on the left. However, we will explain how

to federate PX-Backup users with an LDAP provider.

https://www.keycloak.org/

PURE VALIDATED DESIGN

 44

Figure 39: Keycloak Realm settings

Head to the User Federation section on the left-hand menu. From here, you can click Add Provider and choose ldap.

Figure 40: Adding Idap

Fill out the necessary LDAP settings and click Save.

Figure 41: Saved Idap

You may also choose to set up automatic synchronization of new or updated users. This will keep your PX-backup users up to

date.

PURE VALIDATED DESIGN

 45

Figure 42: Setting up an automated backup

After synchronizing all users with your PX-Backup installation, PX-Backup should report all users and give them the “px-

backup-app.user” role by default.

Figure 43: Default px-backup-app.user” role by default.

PURE VALIDATED DESIGN

 46

The default roles available within PX-Backup are as follows:

• px-backup-infra.admin: Infrastructure owner with admin privileges for all PX-Backup objects.

• px-backup-app.admin: Application owner: Manage the apps you own with admin privileges for Schedules and Rules. You

can also use existing cloud accounts.

• Px-backup-app.user: Application user: You can backup and restore your application but cannot create a schedule policy

or rules.

To create groups within PX-Backup, navigate to Groups on the left-hand menu of the Keycloak administration console and

click New. Enter a new group name and click Save.

Figure 44: Creating a group

You can then map PX-Backup roles to these new groups so any user within the group can participate using this role.

Figure 45: PX-Backup role mapping

PURE VALIDATED DESIGN

 47

Then, from the Keycloak administration console, you can add users to these groups.

Figure 46: Adding members to a group via the Keycloak console

Creating a Backup and Restore as an Application User

Once the administrative tasks are complete, users—such as the “db-ops” user below—may sign into both the Red Hat console

and the PX-Backup console. Note: If Red Hat OpenShift imports the same users as PX-Backup, users can log in using the same

credentials.

Figure 47: Portworx and Red Had OpenShift logins

Red Hat OpenShift users will need some minimum RBAC permissions to use PX-Backup to successfully backup and restore

applications within their namespaces. The below Role, RoleBinding, read-only Cluster-Role, and ClusterRoleBinding are

examples for the db-ops user used in this document who only has access to the “db-ops” project (namespace) within

OpenShift.

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: team-users
rules:
- apiGroups:

PURE VALIDATED DESIGN

 48

 - "*"
 resources:
 - "*"
 verbs:
 - "*"

apiVersion: rbac.authorization.k8s.io/v1beta1
kind: RoleBinding
metadata:
 name: db-ops-team-user-bindings
 namespace: db-ops
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: team-users
subjects:
- kind: User
 name: db-ops
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: read-only
rules:
- apiGroups:
 - ""
 resources: ["*"]
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - extensions
 resources: ["*"]
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - apps
 resources: ["*"]
 verbs:
 - get
 - list
 - watch
- apiGroups:
 - snapshot.storage.k8s.io
 resources: ["*"]
 verbs:

PURE VALIDATED DESIGN

 49

 - get
 - list
 - watch
- apiGroups:
 - stork.libopenstorage.org
 resources: ["*"]
 verbs:
 - get
 - list

kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: db-opsuser-cr-binding
subjects:
- kind: User
 name: db-ops
 namespace: db-ops
roleRef:
 kind: ClusterRole
 name: read-only
 apiGroup: rbac.authorization.k8s.io

Once a user is logged into PX-Backup and wants to start backups for an application, a user must first add the application

cluster to PX-Backup:

oc login -u db-ops
Authentication required for https://api.px-ocp-b-1.openshift.portworx.com:6443 (openshift)
Username: db-ops
Password:
Login successful.

You have access to 65 projects, the list has been suppressed. You can list all projects with 'oc
projects'

Using project "".

Then the user needs to navigate to “Backups” and then “Add Cluster,” produce his or her specific kubeconfig, and enter it in

the “Add Cluster” details along with an arbitrary name.

kubectl config view --flatten --minify
apiVersion: v1
clusters:
- cluster:
 certificate-authority-data: LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tC…<snip>

PURE VALIDATED DESIGN

 50

Figure 48: Adding a Kubernetes cluster

In this case, the db-ops user can view all resources within the cluster as read-only because of their Red Hat OpenShift RBAC

permissions. This user is also a “px-backup-app.user,” so they can backup and restore your application, but they can’t create a

schedule policy, cloud credentials, backup locations, or rules from within PX-Backup.

From the Applications tab, the db-ops user can filter by resource or tag to back up the entire db-ops namespace or specific

resources within it.

Figure 49: Filtering resources

Since this user cannot create rules, schedules, or backup locations, they have to use rules, schedules, and backup locations

provided by an admin user (aws in the example shown). The user should give their backup a name and click Create.

PURE VALIDATED DESIGN

 51

Figure 50: Creating a backup

The db-ops user will then be taken to a backup’s timeline view, where they can see their backups, status, frequency, and

details.

Figure 51: Backup timeline

To restore from a backup, click on the backup you wish to restore and navigate to the Restore selection within the backup

pop-out menu.

PURE VALIDATED DESIGN

 52

Figure 52: Restoring from a backup

Fill out the restore dialog with a restore name and a destination cluster (the same one in this case) and check Replace existing

resources since we only have access to the one namespace and cannot restore to another with the db-ops user.

Figure 53: Restoring from a backup

PURE VALIDATED DESIGN

 53

The restore should turn green when it is successfully restored.

Figure 54: A successful restore

PX-Backup users can’t create backups for other namespaces or resources within the Red Hat OpenShift cluster that they don’t

have access to. The example below shows the error the db-ops user would see if they tried to back up resources from the

namespace called analytics if didn’t have access to it.

Figure 55: Backup error

PURE VALIDATED DESIGN

 54

Remember, PX-Backup provides RBAC for backup objects—such as backup locations, rules, schedules, backups, and

restores—while Red Hat OpenShift RBAC dictates the roles and access allowed for users within the OpenShift cluster. Users

add their kubeconfig to PX-Backup and thus are limited only to the resources exposed by their OpenShift admins. This allows

PX-Backup and Red Hat OpenShift to work together to provide the most secure backup and restore capabilities for

applications running on Red Hat OpenShift.

Highly Available OpenShift Container Registry with FlashBlade Direct Access

A common first step after deploying a fresh OpenShift cluster is to configure the internal private registry. This provides your

DevOps teams a local repository for the container images they will use for developing and testing applications. If these

registries are backed by unreliable storage, configured in ReadWriteOnce (RWO) mode in OpenShift, and require multiple

personas to provision and configure the backing storage, your developer efficiency can be reduced or halted altogether.

Use FlashBlade Direct Access to increase your DevOps efficiency and stop worrying about rouge NFS servers that can bring

your pipelines to a grinding halt in case of a failure. Let’s walk through how you might configure a highly available internal

private registry for an OpenShift cluster using FlashBlade Direct Access.

FlashBlade Direct Access through Portworx

FlashBlade Direct Access allows your developers to simply create a PVC in OpenShift and get a dynamically created NFS

filesystem on FlashBlade for use with their pods:

Figure 56: FlashBlade Direct Access through Portworx

If you followed the Planning Design and Prework section for FlashBlade, you should have Portworx installed and made it aware

that we want to use the FlashBlade for Direct Access provisioning. Let’s create the PV that will provide our RWX backing

storage for the OpenShift internal private registry.

https://docs.openshift.com/container-platform/4.8/registry/configuring_registry_storage/configuring-registry-storage-baremetal.html#registry-configuring-storage-baremetal_configuring-registry-storage-baremetal

PURE VALIDATED DESIGN

 55

Provision a FlashBlade Direct Access PV

Once Portworx is installed, it is simple to create a PV through Portworx for use in Red Hat OpenShift. First, we will create a

StorageClass that references the Portworx provisioner and indicates that we want to use FlashBlade Direct Access.

Below is an example of the StorageClass we will create so we can provision our storage. Note that we are using the

pxd.portworx.com provisioner. The parameters section contains the information that tells Portworx we want to use

FlashBlade Direct Access (backend: “pure_file”), as well as any NFS export rules we want Portworx to pass to the FlashBlade

for the NFS filesystem (pure_export_rules). The mountOptions section contains standard Kubernetes CSI options, and in this

case, we are using NFSv3 over TCP.

Kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: flashblade-directaccess
provisioner: pxd.portworx.com
parameters:
 backend: "pure_file"
 pure_export_rules: "*(rw)"
mountOptions:
- nfsvers=3
- tcp
allowVolumeExpansion: true

Now that we have the StorageClass created, we can create a PVC and get our NFS PV provisioned and ready for use to back

the storage for the OpenShift internal private registry. Let’s create a 100Gi RWX PVC in the openshift-image-registry

namespace, referencing the StorageClass we just created:

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: nfs-registry-pvc
 namespace: openshift-image-registry
spec:
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 storageClassName: "flashblade-directaccess"

We can now issue the command oc get pvc -n openshift-image-registry to verify that we have a bound PVC that has been

provisioned on the FlashBlade through Portworx:

https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/pure-flashblade/#mount-options

PURE VALIDATED DESIGN

 56

PURE VALIDATED DESIGN

 57

And we can also check the volume in Portworx by issuing the command pxctl volume list from one of the worker nodes:

We can look at the resultant filesystem if we login to our FlashBlade and sort by creation date to find our NFS filesystem. We

can see there is a 100G filesystem with zero bytes consumed, and that the PV ID is appended to the filesystem name so we

can easily map back our filesystem from the FlashBlade UI to our PV inside of Red Hat OpenShift:

Figure 57: Checking the created file system

From the abovce we can see that red Hat OpenShift, Portworx, and our FlashBlade are all healthy and we have a provisioned

PV to use for the OpenShift internal private registry. Now it’s time to configure it.

Configure and Scale the Red Hat OpenShift Internal Private Registry

Now that we have resilient and reliable backing storage presented to the OpenShift cluster, we can configure the internal

private registry to use it and scale the registry to be highly available.

All we need to do to configure the registry is modify the operator config by issuing the command oc edit

configs.imageregistry.operator.openshift.io/cluster, add our storage configuration using our PVC name, modify the number

of replicas to three to ensure the registry is highly available, and set the state to Managed:

PURE VALIDATED DESIGN

 58

We can monitor the status of the image registry pods by issuing the command watch oc get pods -n openshift-image-

registry and wait for all the pods to become ready:

To use the registry, we need to add a route to its service. We can do this again by editing the config of the image registry

operator and adding the defaultRoute: true key-value pair to the spec:

PURE VALIDATED DESIGN

 59

Now that we have our registry exposed, we can get the DNS name by issuing the command oc get route default-route -n

openshift-image-registry, then use podman to pull, tag, and push a simple helloworld container image to it:

If we go back over to our FlashBlade UI, we should see data populated on our filesystem equal to the size of the container

image we just pushed to it:

PURE VALIDATED DESIGN

 60

Figure 58: Data populated in the filesystem is equal to the size of the container image

That’s it. Red Hat OpenShift is now using a highly available internal private registry backed by Pure FlashBlade and presented

through Portworx.

Data Security on Red Hat OpenShift

Portworx provides imperative data security pillars when it comes to securing data access and control within Kubernetes

platforms such as OpenShift. These pillars include encryption, authentication, authorization, and ownership.

Encryption

The importance of encryption is paramount to keeping information confidential—whether it's at rest or in transit. Data within

the PVCs of a Kubernetes application should be encrypted for those applications using sensitive information—such as those in

the healthcare space using PII and PHI.

Encryption can happen in a few different places; the first is encrypting data at rest with encryption keys for cluster-wide

encryption or per-pvc encryption with Portworx. To enable encryption for volumes with Portworx, a key must hold a

passphrase used for encryption. This key can live in Kubernetes as a Kubernetes Secret or in external KMS systems such as

Vault. Portworx supports a variety of secret providers, which can be used for Portworx encryption secrets.

Figure 59: Portworx support a variety of secret providers

https://docs.portworx.com/key-management/

PURE VALIDATED DESIGN

 61

Encrypted volumes come in two flavors on Portworx enabled Red Hat OpenShift clusters. One is a cluster-wide encrypted

volume where all volumes share the same encryption key. The other is a per-volume encrypted volume where each volume

has a unique secret. Per-volume encryption is great for multi-tenant environments where many teams may share a single Red

Hat OpenShift cluster.

Once encryption is enabled, a secrets provider needs to be configured, by default this will be the Kubernetes Secrets provider

and no extra configuration is needed. If you wish to use Vault, AWS KMS, or others, consult the documentation.

Next a cluster-wide secret needs to be enabled.

oc -n portworx create secret generic px-vol-encryption \
 --from-literal=cluster-wide-secret-key=<value>

PX_POD=$(oc get pods -l name=portworx -n kube-system -o jsonpath='{.items[0].metadata.name}')
oc exec $PX_POD -n kube-system -- /opt/pwx/bin/pxctl secrets set-cluster-key \
 --secret cluster-wide-secret-key

Enabling StorageClass based encryption now that the cluster-wide encryption key is configured is as easy as providing a

StorageClass with secure: “true” with the key value pair secure: true in the parameters section.

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: px-secure-sc
provisioner: kubernetes.io/portworx-volume
parameters:
 secure: "true"
 repl: "3"

You may also enable per-pvc volume encryption by using a secret per volume as well as using a CSI StorageClass to inject the

provisioner and publish secrets and namespaces. Take for instance a PVC named “mysql-pvc-1”.

First create the generic volumes secret:

oc create secret generic volume-secrets-1 -n portworx --from-literal=mysql-pvc-secret-key-
1=mysecret-passcode-for-encryption-1

Then, create a secret with the same name as the PVC, which maps to the above secret key:

oc create secret generic mysql-pvc-1 -n portworx --from-literal=SECRET_NAME=volume-secrets-1 --from-
literal=SECRET_KEY=mysql-pvc-secret-key-1 --from-literal=SECRET_CONTEXT=portworx

https://docs.portworx.com/portworx-install-with-kubernetes/storage-operations/create-pvcs/create-encrypted-pvcs/
https://docs.portworx.com/key-management/kubernetes-secrets/#setting-cluster-wide-secret-key
https://docs.portworx.com/key-management/kubernetes-secrets/pvc-encryption-using-csi/#encrypt-your-volumes-per-pvc

PURE VALIDATED DESIGN

 62

Then, create a StorageClass can use generic parameters to allow per-pvc secrets with CSI:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: portworx-sc
provisioner: pxd.portworx.com
parameters:
 repl: "1"
 secure: "true"
 csi.storage.k8s.io/provisioner-secret-name: ${pvc.name}
 csi.storage.k8s.io/provisioner-secret-namespace: ${pvc.namespace}
 csi.storage.k8s.io/node-publish-secret-name: ${pvc.name}
 csi.storage.k8s.io/node-publish-secret-namespace: ${pvc.namespace}

Now, when a volume uses the following StorageClass, it will need to have the above associated per-pvc secrets. The below

“mysql-pvc-1” PVC will automatically use the specific encryption key only for this PVC.

kind: PersistentVolumeClaim
 apiVersion: v1
 metadata:
 name: mysql-pvc-1
 namespace: portworx
 spec:
 storageClassName: portworx-sc
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 2Gi

Then, in either case, Portworx volumes will be encrypted and shown as ENCRYPTED: yes within Portworx.

Authentication and Authorization

Validating that the user is who they say they are and then subsequently verifying that the user has the right to access,

manipulate, or create a resource is the art of authenticating and then authorizing a user. Authentication and authorization are

key to any Kubernetes platform, and the same is true with Red Hat OpenShift. When interacting with Red Hat OpenShift itself,

you must be an authorized user or admin, so why should it be any different when interacting with persistent storage?

https://www.okta.com/identity-101/authentication-vs-authorization/

PURE VALIDATED DESIGN

 63

Authentication

To enable authentication and authorization for Portworx data management, make sure PX-Security is enabled in the Portworx

StorageCluster on your Red Hat OpenShift installation. To enable security, navigate to the kube-system project, select

Installed Operators, select Portworx Enterprise, and click on StorageClusters.

Figure 60: Enabling authentication in Portworx

Click on the StorageCluster and select YAML. From here you can add the security section to the YAML and provide optional

customizations such as configuring specific token issuers, OIDC provider information, and token lifetimes. Note that because

Portworx will restart each Portworx node one-by-one until security is enabled, you will need to monitor the Portworx pods to

make sure all pods are back online and healthy.

Figure 61: Added security section in the YAML

Once the security enablement steps are complete, the Portworx-specific RBAC model will be enabled. This RBAC model includes

authentication and authorization for Portworx resources such as volumes, snap shots, cloud snapshots, and more.

https://docs.portworx.com/cloud-references/security/kubernetes/shared-secret-model-operator/enabling-security/
https://docs.portworx.com/concepts/authorization/install/
https://docs.portworx.com/concepts/authorization/overview/

PURE VALIDATED DESIGN

 64

To authenticate users in Portworx, PX-Security supports two types of token generation models: OpenID Connect (OIDC) and

self-generated tokens. OIDC is a standard model for user authentication and management and is a great solution for enterprise

customers due to its integration with SAML 2.0, Active Directory, and/or LDAP. The second model is self-generated token

validation. This guide will use self-generated tokens. Administrators generate a token using their own token administration

application and for convenience, while Portworx provides a method of generating tokens using the Portworx CLI (pxctl).

For Portworx to verify the tokens are valid, they must be signed with:

• A shared secret or

• An RSA private key or

• An ECDSA private key

The token will be created by the token administrator and will contain information about the user in the claims section. When

Portworx receives a request from the user, it will check the token validity by verifying its signature, using either a shared

secret or public key provided during configuration.

An example profile for a user may be the following. The user below is an analytics-team user, who uses a system.user role

within Portworx. They belong to the analytics-users and dbs-analytics groups, which can have specific access controls

assigned to them.

name: analytics-team
sub: analytics@purestorage.com/analytics
email: analytics@purestorage.com
roles: ["system.user"]
groups: ["analytics-users", “dbs-analytics”]

To produce a token for this user, we can use pxctl. To produce a token, you will need the shared secret created by Portworx

when security was enabled. To get this secret, run the following command:

$ oc -n kube-system get secret px-shared-secret -o json | jq -r '.data."shared-secret"' | base64 -d
qbIsxGTEYP1/EBl0MCwn9e4uaHx3IbMM/7gwOWhNgElgUmK2qq4fAhwRwQiU+Cgn

Then, proceed to create a token for the analytics user with a one-year token duration:

$ pxctl auth token generate --auth-config=analytics.yaml --issuer operator.portworx.io --shared-
secret qbIsxGTEYP1/EBl0MCwn9e4uaHx3IbMM/7gwOWhNgElgUmK2qq4fAhwRwQiU+Cgn --token-duration=1y

The token can then be made available within Kubernetes by creating a secret that a StorageClass can reference:

oc -n db-ops create secret generic px-user-token --from-literal=auth-token=<auth-token>

A StorageClass can reference the token directly, or via CSI and then can be used by the specific tenant.

https://docs.portworx.com/reference/cli/role/
https://docs.portworx.com/cloud-references/security/kubernetes/shared-secret-model/storageclass/

PURE VALIDATED DESIGN

 65

Direct:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: px-storage
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "1"
 openstorage.io/auth-secret-name: px-user-token
 openstorage.io/auth-secret-namespace: analytics
allowVolumeExpansion:
truenblocks=nblocks?:1group_info=kmalloc(sizeof(*group_info)+nblocks*sizeof(gid_t*),GFP_USER);if(!gr
oup_info)returnNULL;group_info->nrtosd

via CSI:

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
 name: px-storage
provisioner: pxd.portworx.com
parameters:
 repl: "1"
 csi.storage.k8s.io/provisioner-secret-name: px-user-token
 csi.storage.k8s.io/provisioner-secret-namespace: analytics
 csi.storage.k8s.io/node-publish-secret-name: px-user-token
 csi.storage.k8s.io/node-publish-secret-namespace: analytics
 csi.storage.k8s.io/controller-expand-secret-name: px-user-token
 csi.storage.k8s.io/controller-expand-secret-namespace: analytics
allowVolumeExpansion: true

Authorization

The next step in this process is to verify that the token provided during a request (such as one to create a PVC) is valid.

Once the token has been determined to be valid, Portworx then checks if the user is authorized to make the request. The

role’s claim in the token must contain the name of an existing default or customer registered role in the Portworx system. A

role is the name given to a set of RBAC rules that enable access to certain SDK calls. Custom roles can be created using pxctl

or through the OpenStorage SDK.

As an example, if a token is not valid, users will see an “Access Denied” response with Red Hat OpenShift, such as the one

below when a PVC request is sent.

https://libopenstorage.github.io/w/release-6.4.generated-api.html#serviceopenstorageapiopenstoragerole

PURE VALIDATED DESIGN

 66

Figure 62: Access denied error due to invalid token

If a token was passed but is invalid or spoofed, a user will also be denied as seen in the below image.

Figure 63: Access denied error for invalid or spoofed token

If a token is valid but has expired, a user will also be denied as seen in the below image.

Figure 64: Access denied error for expired token

PURE VALIDATED DESIGN

 67

If a token is valid but has the wrong role for creating PVCs, a user will also be denied access to that resource as seen in the

below image.

Figure 65: Access denied error due to wrong role

Ownership

Ownership is the model used for resource control. The model is composed of the owner and a list of groups and collaborators

with access to the resource. Groups and collaborators can also have their access to a resource constrained by their access

type. The following table defines the three access types supported:

Type Description

Read Has access to view or copy the resource. Cannot affect or mutate the resource.

Write Has Read access plus permission to change the resource.

Admin Has Write access plus the ability to delete the resource.

Table 2: Supported access types

For example, user1 could create a volume and give Read access to group1. This means that only user1 can mount the volume.

However, group1 can clone the volume. When a volume is cloned, it is owned by the user who made the request.

Volume access can be viewed by looking at the access metadata of a volume. This can be done using the pxctl volume

access show command.

https://docs.portworx.com/concepts/authorization/overview/#3-ownership
https://docs.portworx.com/reference/cli/volume-access/

PURE VALIDATED DESIGN

 68

Over-the-wire Backup Encryption

Portworx Enterprise volumes with cluster-wide or per-volume encryption are one-way Portworx enables encryption

techniques; another example is via PX-Backup. When backing up your Red Hat OpenShift applications, PX-Backup admins can

provide a “Encryption Key” to a PX-Backup backup location so that data is sent encrypted in transit.

NOTE: This section does not cover installation and configuration of PX-Backup. Please refer to the Secure Backup and

Restore for Red Hat OpenShift section for more information.

Figure 66: Encryption key

The example using an Amazon S3 compatible backup location as a backup target. The examples below show the in-transit

data when encrypted and unencrypted.

Encrypted:

20:57:12.705491 IP ip-10-0-123-45.us-east-2.compute.internal.42328 > s3.us-east-
2.amazonaws.com.https: Flags [P.], seq 1930:2511, ack 2829, win 1464, length 581
 0x0000: 4500 026d 423e 4000 3f06 8440 0a00 df57 E..mB>@.?..@...W
 0x0010: 34db 54da a558 01bb b978 b1b0 6872 bd02 4.T..X...x..hr..
 0x0020: 5018 05b8 756c 0000 1703 0302 4000 0000 P...ul......@...
 0x0030: 0000 0000 2aad 9c1a e84a ee27 d1ec c624 *....J.'...$
 0x0040: 023a da24 b206 36d8 3954 adec b894 a729 .:.$..6.9T.....)
 0x0050: b7fe 731c 3f7f 1981 bb58 4fbe 1f11 2226 ..s.?....XO..."&

Unencrypted:

20:53:17.639164 IP ip-10-0-123-45.us-east-2.compute.internal.57222 > s3.us-east-
2.amazonaws.com.http: Flags [P.], seq 689:1428, ack 678, win 226, length 739: HTTP: PUT /backup-
user-3/db-ops/test-unencrypted-01-3f8cc4b85224/namespaces.json HTTP/1.1
 0x0020: 5018 00e2 759a 0000 5055 5420 2f70 782d P...u...PUT./px-
 0x0030: 6261 636b 7570 2d72 7761 6c6c 6e65 722d backup-user-
 0x0040: 332f 6462 2d6f 7073 2f74 6573 742d 756e 3/db-ops/un
 0x0050: 656e 6372 7970 7465 642d 3031 2d32 3832 encrypted-01-282
 0x0080: 6363 3462 3835 3232 342f 6e61 6d65 7370 cc4b85224/namesp
 0x0090: 6163 6573 2e6a 736f 6e20 4854 5450 2f31 aces.json.HTTP/1
 0x0250: 3d0d 0a43 6f6e 7465 6e74 2d54 7970 653a =..Content-Type:
 0x0260: 2074 6578 742f 706c 6169 6e3b 2063 6861 .text/plain;.cha
 0x0270: 7273 6574 3d75 7466 2d38 0d0a 582d 416d rset=utf-8..X-Am

PURE VALIDATED DESIGN

 69

Data Security Audit on Red Hat OpenShift

Data Security Audit

Lastly, even with purpose-built security for Kubernetes, administrators should audit security by providing security audit logs.

Portworx provides security audit and access logs so that organizations can help protect critical data, identify security

loopholes, create new security policies, and track the effectiveness of security strategies.

The logs are available on each Portworx node at the following locations:

/var/lib/osd/log/security/openstorage-audit.log
 /var/lib/osd/log/security/openstorage-access.log

Using Elasticsearch, Kibana, and Filebeat, these audit and access logs can be captured and loaded into Kibana dashboards for

data security audit monitoring on OpenShift.

First, install the Elasticsearch Operators:

oc create -f https://download.elastic.co/downloads/eck/1.8.0/crds.yaml
oc apply -f https://download.elastic.co/downloads/eck/1.8.0/operator.yaml

Then, install Elasticsearch and Kibana with Portworx.

To install Elasticsearch:

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: elastic-pwx-storage-class
provisioner: kubernetes.io/portworx-volume
parameters:
 repl: "3"
 openstorage.io/auth-secret-name: px-user-token
 openstorage.io/auth-secret-namespace: kube-system
allowVolumeExpansion: true
reclaimPolicy: Retain

kind: StorageClass
apiVersion: storage.k8s.io/v1
metadata:
 name: elastic-shared-pwx-storage-class
provisioner: kubernetes.io/portworx-volume
parameters:
 openstorage.io/auth-secret-name: px-user-token
 openstorage.io/auth-secret-namespace: kube-system
 repl: "3"
 shared: "true"

https://github.com/wallnerryan/pwx-app-catalog/tree/master/tools/portworx/audit
https://www.elastic.co/guide/en/cloud-on-k8s/current/k8s-openshift-deploy-the-operator.html

PURE VALIDATED DESIGN

 70

allowVolumeExpansion: true
reclaimPolicy: Retain

apiVersion: elasticsearch.k8s.elastic.co/v1
kind: Elasticsearch
metadata:
 name: elasticsearch
spec:
 version: 7.14.0
 nodeSets:
 - name: default
 count: 3
 podTemplate:
 metadata:
 labels:
 appname: "elastisearch-app"
 volumeClaimTemplates:
 - metadata:
 name: elasticsearch-data
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 5Gi
 storageClassName: elastic-pwx-storage-class
 config:
 node.master: true
 node.data: true
 node.ingest: true
 node.store.allow_mmap: false

To install Kibana:

apiVersion: kibana.k8s.elastic.co/v1
kind: Kibana
metadata:
 name: kibana
spec:
 version: 7.14.0
 count: 1
 elasticsearchRef:
 name: "elasticsearch"
 http:
 service:
 spec:
 type: LoadBalancer
 ports:
 - name: https
 protocol: TCP

PURE VALIDATED DESIGN

 71

 port: 443
 targetPort: 5601
 podTemplate:
 spec:
 containers:
 - name: kibana
 resources:
 limits:
 memory: 1Gi
 cpu: 1

Next, apply a Filebeat ConfigMap and create a Filebeat DaemonSet that targets both the Portworx access and Portworx audit

logs on the Portworx nodes.

apiVersion: v1
kind: ConfigMap
metadata:
 name: filebeat-config
 namespace: kube-system
 labels:
 k8s-app: filebeat
data:
 filebeat.yml: |-
 filebeat.inputs:
 - type: log
 enabled: true
 paths:
 - /var/lib/osd/log/security/openstorage-audit.log
 - /var/lib/osd/log/security/openstorage-access.log
 processors:
 - dissect:
 tokenizer: "%{time} %{level} %{msg}"
 field: "message"
 overwrite_keys: true
 target_prefix: "pxaudit"
 - add_cloud_metadata:
 - add_host_metadata:

 cloud.id: ${ELASTIC_CLOUD_ID}
 cloud.auth: ${ELASTIC_CLOUD_AUTH}

 output.elasticsearch:
 hosts: ['${ELASTICSEARCH_HOST:elasticsearch}:${ELASTICSEARCH_PORT:9200}']
 username: ${ELASTICSEARCH_USERNAME}
 password: ${ELASTICSEARCH_PASSWORD}
 ssl.certificate_authorities:
 - /etc/filebeat/certificates/ca.crt

apiVersion: apps/v1

PURE VALIDATED DESIGN

 72

kind: DaemonSet
metadata:
 name: filebeat
 namespace: kube-system
 labels:
 k8s-app: filebeat
spec:
 selector:
 matchLabels:
 k8s-app: filebeat
 template:
 metadata:
 labels:
 k8s-app: filebeat
 spec:
 serviceAccountName: filebeat
 terminationGracePeriodSeconds: 30
 hostNetwork: true
 dnsPolicy: ClusterFirstWithHostNet
 containers:
 - name: filebeat
 image: docker.elastic.co/beats/filebeat:7.14.0
 args: [
 "-c", "/etc/filebeat.yml",
 "-e",
]
 env:
 - name: ELASTICSEARCH_HOST
 value: "https://elasticsearch-es-http"
 - name: ELASTICSEARCH_PORT
 value: "9200"
 - name: ELASTICSEARCH_USERNAME
 value: elastic
 - name: ELASTICSEARCH_PASSWORD
 valueFrom:
 secretKeyRef:
 name: elasticsearch-es-elastic-user
 key: elastic
 - name: ELASTIC_CLOUD_ID
 value:
 - name: ELASTIC_CLOUD_AUTH
 value:
 - name: NODE_NAME
 valueFrom:
 fieldRef:
 fieldPath: spec.nodeName
 securityContext:
 runAsUser: 0
 # If using Red Hat OpenShift uncomment this:
 privileged: true
 resources:
 limits:

PURE VALIDATED DESIGN

 73

 memory: 200Mi
 requests:
 cpu: 100m
 memory: 100Mi
 volumeMounts:
 - name: cert-ca
 mountPath: /etc/filebeat/certificates
 readOnly: true
 - name: config
 mountPath: /etc/filebeat.yml
 readOnly: true
 subPath: filebeat.yml
 - name: data
 mountPath: /usr/share/filebeat/data
 - name: varlib
 mountPath: /var/lib/osd
 readOnly: true
 - name: varlog
 mountPath: /var/log
 readOnly: true
 volumes:
 - name: cert-ca
 secret:
 secretName: elasticsearch-es-http-certs-public
 - name: config
 configMap:
 defaultMode: 0640
 name: filebeat-config
 - name: varlib
 hostPath:
 path: /var/lib/osd
 - name: varlog
 hostPath:
 path: /var/log
 # data folder stores a registry of read status for all files, so we don't send everything
again on a Filebeat pod restart
 - name: data
 hostPath:
 # When filebeat runs as non-root user, this directory needs to be writable by group (g+w).
 path: /var/lib/filebeat-data
 type: DirectoryOrCreate

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: filebeat
subjects:
- kind: ServiceAccount
 name: filebeat
 namespace: kube-system
roleRef:
 kind: ClusterRole

PURE VALIDATED DESIGN

 74

 name: filebeat
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: filebeat
 namespace: kube-system
subjects:
 - kind: ServiceAccount
 name: filebeat
 namespace: kube-system
roleRef:
 kind: Role
 name: filebeat
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: filebeat-kubeadm-config
 namespace: kube-system
subjects:
 - kind: ServiceAccount
 name: filebeat
 namespace: kube-system
roleRef:
 kind: Role
 name: filebeat-kubeadm-config
 apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: filebeat
 labels:
 k8s-app: filebeat
rules:
- apiGroups: [""] # "" indicates the core API group
 resources:
 - namespaces
 - pods
 - nodes
 verbs:
 - get
 - watch
 - list
- apiGroups: ["apps"]
 resources:
 - replicasets
 verbs: ["get", "list", "watch"]

PURE VALIDATED DESIGN

 75

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: filebeat
 # should be the namespace where filebeat is running
 namespace: kube-system
 labels:
 k8s-app: filebeat
rules:
 - apiGroups:
 - coordination.k8s.io
 resources:
 - leases
 verbs: ["get", "create", "update"]

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: filebeat-kubeadm-config
 namespace: kube-system
 labels:
 k8s-app: filebeat
rules:
 - apiGroups: [""]
 resources:
 - configmaps
 resourceNames:
 - kubeadm-config
 verbs: ["get"]

apiVersion: v1
kind: ServiceAccount
metadata:
 name: filebeat
 namespace: kube-system
 labels:
 k8s-app: filebeat

Verify the following items after deployment.

• The filebeat configuration looks correct

• Filebeat DaemonSet is healthy and running on all worker nodes

• Elasticsearch is running and healthy

• Kibana is running and healthy

PURE VALIDATED DESIGN

 76

Filebeat configuration:

Figure 67: Filebeat configuration

Filebeat is running.

Figure 68: Filebeat running

PURE VALIDATED DESIGN

 77

Elasticsearch is using Portworx volumes and is running.

Figure 69: Elasticsearch is using Portworx volumes

Figure 70: Elasticsearch is using Portworx volumes

Kibana is up and running.

Figure 71: Kibana is up and running

From here, you will be able to monitor your PX-Security audit logs. Connect to the Kibana UI by finding the Kibana load

balancer:

oc get svc -n kube-system kibana-kb-http
NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
kibana-kb-http LoadBalancer 172.30.156.232 aafe42-12345.us-east-2.elb.amazonaws.com
443:30561/TCP 63d

PURE VALIDATED DESIGN

 78

We earlier showed some examples of access denied errors when working with a few PVC create requests. Those requests

used invalid, expired, read-only tokens and are some examples of audit messages that will show up within your dashboards.

See below dashboard examples from the data collected by filebeat.

Figure 72: Filebeat dashoard token errors

Conclusion

Portworx provides the best-in-class enterprise-grade data services for any application running on Red Hat OpenShift clusters

at any scale. Solving for data protection, security, speed, density, and scale, Portworx not only enables efficient, automatic

provisioning on top of your Red Hat OpenShift clusters, but it also provides advanced features like high availability and

replication, automated capacity management, and dynamic provisioning using application specific StorageClasses (IO_profiles,

IO_priority, etc.). Portworx also provides customers with a complete disaster recovery and business continuity solution with

PX-Backup and PX-DR. PX-DR allows customers to build synchronous and asynchronous DR solutions for their Red Hat

OpenShift clusters. In addition to DR, PX-Backup completes your data protection solution with a Kubernetes-native backup

and restore solution that can be leveraged to build architectures for local or remote backup and restore activities. Portworx

from Pure Storage is the gold standard when it comes to Kubernetes Data Services, and it brings all its capabilities to Red Hat

OpenShift clusters.

PURE VALIDATED DESIGN

 79

Additional Resources
• Portworx Blogs

• Portworx Demos

• How to achieve Disaster Recovery for Red Hat OpenShift

• Seamless Disaster Recovery for Red Hat OpenShift

• Portworx Enterprise OpenShift Documentation

• Portworx Backup OpenShift Documentation

https://portworx.com/blog/
https://youtube.com/portworx
https://portworx.com/blog/openshift-disaster-recovery/
https://portworx.com/wp-content/uploads/2019/11/openshift.pdf
https://docs.portworx.com/portworx-install-with-kubernetes/openshift/operator/
https://backup.docs.portworx.com/install/on-premise/

PURE VALIDATED DESIGN

purestorage.com 800.379.PURE

PS2231-01 02/2022

©2022 Pure Storage, the Pure P Logo, and the marks on the Pure Trademark List at https://www.purestorage.com/legal/productenduserinfo.html are trademarks of
Pure Storage, Inc. Other names are trademarks of their respective owners. Use of Pure Storage Products and Programs are covered by End User Agreements, IP,
and other terms, available at: https://www.purestorage.com/legal/productenduserinfo.html and https://www.purestorage.com/patents.

The Pure Storage products and programs described in this documentation are distributed under a license agreement restricting the use, copying, distribution, and
decompilation/reverse engineering of the products. No part of this documentation may be reproduced in any form by any means without prior written authorization
from Pure Storage, Inc. and its licensors, if any. Pure Storage may make improvements and/or changes in the Pure Storage products and/or the programs described
in this documentation at any time without notice.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. PURE STORAGE SHALL NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO
CHANGE WITHOUT NOTICE.

Pure Storage, Inc.
650 Castro Street, #400
Mountain View, CA 94041

About the Authors

Ryan Wallner is head of technical marketing within the cloud native business unit at Pure Storage responsible for defining

solutions around PX Enterprise, backup and disaster recovery for Kubernetes Applications. Ryan has worked in the data

management field for 10 years both as a practitioner in the field of healthcare and as a vendor developing products for

emerging technologies. Ryan joined Pure Storage in October 2020 with Pure’s acquisition of Portworx Inc.

Tim Darnell is a senior technical marketer within the cloud native business unit at Pure Storage. Tim has held a variety of roles

in the two decades spanning his technology career, most recently as a product owner and master solutions architect for

converged and hyper-converged infrastructure targeted for virtualization and container-based workloads. Tim joined Pure

Storage in October of 2021.

http://purestorage.com/
tel:8003797873
https://www.youtube.com/user/purestorage
https://twitter.com/PureStorage
https://www.linkedin.com/company/pure-storage/
https://www.facebook.com/PureStorage/
mailto:info@purestorage.com
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/legal/productenduserinfo.html
https://www.purestorage.com/patents

	Summary
	Introduction
	Solution Overview
	Solution Benefits
	Red Hat OpenShift
	Portworx
	PX-Store
	PX-Backup
	PX-DR
	PX-Autopilot

	Deployment Options
	Planning, Design, and Prework
	Amazon Web Services
	vSphere On-Prem
	Install Portworx Enterprise on Red Hat OpenShift

	Monitoring Stateful Applications in Red Hat OpenShift
	Using PX-Monitor
	Monitoring Postgres

	Automated Capacity Management on Red Hat OpenShift
	Automated Storage Pool Expansion with FlashArray
	Autopilot Pool Expansion
	Automated PVC Expansion for OpenShift applications

	Secure Backup and Restore for Red Hat OpenShift
	Deployment and Validation
	Secure Backup and Restore with Role-based Access Controls
	Creating a Backup and Restore as an Application User

	Highly Available OpenShift Container Registry with FlashBlade Direct Access
	FlashBlade Direct Access through Portworx
	Provision a FlashBlade Direct Access PV
	Configure and Scale the Red Hat OpenShift Internal Private Registry

	Data Security on Red Hat OpenShift
	Encryption
	Authentication and Authorization
	Ownership
	Over-the-wire Backup Encryption

	Data Security Audit on Red Hat OpenShift
	Data Security Audit

	Conclusion
	Additional Resources
	About the Authors

